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1. INTRODUCTION

It is well known that scattering of electromagnetic waves by various
cylindrical objects has long been studied by many people, and these
studies have been motivated both by scientific interests in developing
new techniques for solving scattering problems and by numerous engi-
neering applications. More recently, Korshunova, Sivov, Shatrov, et al.
have investigated the interaction of electromagnetic waves with cylin-
drical objects but possessing perfect electric or magnetic conductance
along helical lines, and some novel phenomena have been demonstrated
as well as practical applications in electromagnetic engineering have
been proposed [1–5]. On the other hand, Kishk and Kildal have also
examined the scattering from a dielectric cylinder with T- and L-strips
using both theoretical and experimental methods [6]. It is apparently
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seen that the electromagnetic scattering from cylindrical bianisotropic
objects has been investigated in [7–9] while the related models have
also been examined in the previous studies [10–13]. To the authors’
best knowledge, no work has, however, been done concerning with the
scattering effect resulted from the helical conductance on the surface
of inhomogeneous bianisotropic cylinder.

In this contribution, the authors pay attention to the effects of the
helical conductance of the surface on the multiple scattering charac-
teristics of impedance cylinders eccentrically coated with bianisotropic
media. In the investigations, the T- and L-strips can be regarded as
the special cases of the helical conductance of the cylindrical surface,
and are thus used to examine the applicability of the technique pro-
posed in this paper and the correctness of the results presented. The
methodologies combined and employed in the theoretical analysis are
the boundary-value technique and the method of generalized separa-
tion variables.

2. DESCRIPTION OF THE PROBLEM

Fig. 1(a) presents the geometry of the problem, in which N parallel,
infinitely long, non-overlapping anisotropic impedance cylinders eccen-
trically coated with bianisotropic media are embedded in an isotropic
medium (εb, µb) . The cross section of the qth composite cylinder is
shown in Fig. 1(b), and its radii are respectively denoted by R

(q)
1 and

R
(q)
2 , while the eccentric distance stands for d(q)(q = 1, 2, · · · , N) . In

the host coordinate system (X,Y, Z), the location of the qth cylinder
is noted by (ρ′q, ϕ

′
q), and the incident plane wave is in the direction

of k(kb, θ0, ϕ0) = kb(sin θ0 cosϕ0ex + sin θ0 sinϕ0ey + cos θ0ez), here
(ex, ey, ez) are the three unit vectors in the host coordinate system.

In the analysis, the constitutive features of the bianisotropic coating
are described by the linear equations as (ejωt) :

�D(q) =
[
ε(q)

]
�E(q) +

[
ξ(q)
e

]
�H(q) (1a)

�B(q) =
[
µ(q)

]
�H(q) +

[
ξ(q)
m

]
�E(q) (1b)

where
[
ε(q)

]
,

[
µ(q)

]
,

[
ξ
(q)
e

]
, and

[
ξ
(q)
m

]
are the permittivity tensor,

permeability tensor, and magnetoelectric cross coupling tensors, re-
spectively. In the cylindrical coordinate system the four constitutive
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(a) (b)

Figure 1. Geometry and coordinates of the N -parallel composite
eccentric bianisotropic cylinders with the helical conductance at ρ

(q)
2 =

R
(q)
2 . The separation between the adjacent cylinders C(p) and C(q)

is noted by the distance D(qp) where D(qp) ≥ (R(p)
2 +R

(q)
2 ) .

tensors, O
(q)
2 (ρ(q)

2 , ϕ
(q)
2 , z

(q)
2 ) (ρ(q)

1 ≥ R
(q)
1 , ρ

(q)
2 ≤ R

(q)
2 ), are stated as

[
C(q)

]
=



C

(q)
1 −jC(q)

12 0
jC

(q)
12 C

(q)
1 0

0 0 C
(q)
2


 , C = ε, µ, ξe, ξm . (2)

In Fig. 1(a), the twist angle of helical line on the outer surface ρ
(q)
2 =

R
(q)
2 of bianisotropic coating is assumed to be Ψ(q) . When 0 < Ψ(q) <

π
2 , the helical line is the right-handed, while π

2 < Ψ(q) < π corresponds
to the left-handed. Especially, when Ψ(q) = 0, π

2 the helical surfaces
are reduced to the T- and L-strips, respectively [6].
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3. FIELD DISTRIBUTION

The excitation above is provided by a plane wave of TMz-polarization
with respect to the z-axis, and the incident electric and magnetic field
components in the cylindrical coordinate system O

(q)
2 (ρ(q)

2 , ϕ
(q)
2 , z

(q)
2 )

are expressed as

E
(q)
zinc = E0 sin θ0e

jkb0ρ′q cos(ϕ′q−ϕ0)
∞∑

n=−∞
jnJ

(q)
n2 e

jn
(
ϕ

(q)
2 −ϕ0

)
e
(q)
2 ,

q = 1, 2, · · · , N (3a)

E
(q)
ϕinc=E0

cos θ0

kb0ρ
(q)
2

ejkb0ρ
′
q cos(ϕ′q−ϕ0)

∞∑
n=−∞

jnnJ
(q)
n2 e

jn
(
ϕ

(q)
2 −ϕ0

)
e
(q)
2 ,(3b)

and

H
(q)
ϕinc = −E0

jωεb
kb

ejkb0ρ
′
q cos(ϕ′q−ϕ0)

∞∑
n=−∞

jnJ
(q)′

n2 e
jn

(
ϕ

(q)
2 −ϕ0

)
e
(q)
2 , (3c)

where J
(q)
n2 = Jn(kb0ρ

(q)
2 ) is the nth-order Bessel function of the first

kind, J
(q)′

n2 = J ′n(kb0ρ
(q)
2 ) denotes the derivative of J

(q)
n2 with respect

to its argument, k2
b0 = k2

b − β2, β = kb cos θ0, kb = ω
√
µbεb, and

e
(q)
2 = ejβz

(q)
2 .

Using the method of generalized separation variables and following
the similar procedure adopted in [12], it is found that the tangential
field components in the bianisotropic coating with respect to the coor-
dinate system O

(q)
2 (ρ(q)

2 , ϕ
(q)
2 , z

(q)
2 ) can be expressed as




E
(q)
z1

H
(q)
z1

E
(q)
ϕ1

H
(q)
ϕ1




=
∞∑

m=−∞

∞∑
n=−∞




V
(q,1)
nm (ρ(q)

2 ) V
(q,2)
nm (ρ(q)

2 )

V
(q,3)
nm (ρ(q)

2 ) V
(q,4)
nm (ρ(q)

2 )

V
(q,5)
nm (ρ(q)

2 ) V
(q,6)
nm (ρ(q)

2 )

V
(q,7)
nm (ρ(q)

2 ) V
(q,8)
nm (ρ(q)

2 )



ejnϕ

(q)
2 (4)
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where V
(q,s)
nm (ρ(q)

2 ) (s = 1, 2, · · · , 8) are presented in [12] and sup-
pressed here, however, it must be noted that here β = kb cos θ0 �= 0 .
At the anisotropic impedance surface

ρ
(q)
1 = R

(q)
1 , E

(q)
z1 = −η(q)

z H
(q)
1ϕ , E

(q)
ϕ1 = η(q)

ϕ H
(q)
z1 (5)

and when η
(q)
z = ∞, η

(q)
ϕ = 0 , the impedance surface becomes soft,

while η
(q)
z = 0, η

(q)
ϕ = ∞ corresponds to the hard surface [14, 15].

D
(q)
1n and D

(q)
2n in (4) are the unknown coefficients to be determined

and the translational addition theorem for cylindrical wave functions
has been employed in order to obtain the tangential field components
in (4).

The total tangential field components outside the bianisotropic coat-
ing (ρ(q)

2 ≥ R
(q)
2 ) can be written as the following form with respect to

O
(q)
2 (ρ(q)

2 , ϕ
(q)
2 , z

(q)
2 ) ,

E
(q)
z2 = E

(q)
zinc +

∞∑
n=−∞

a(q)
n H

(q)
n2 e

(q)
ϕ2e

(q)
2 +

N∑
l=1
l �=q

∞∑
n=−∞

a(l)
n H

(l)
n2e

(l)
ϕ2e

(l)
2 (6a)

H
(q)
z2 =

∞∑
n=−∞

b(q)n H
(q)
n2 e

(q)
ϕ2e

(q)
2 +

N∑
l=1
l �=q

∞∑
n=−∞

b(l)n H
(l)
n2e

(l)
ϕ2e

(l)
2 (6b)

E
(q)
ϕ2 = E

(q)
ϕinc +

cos θ0

kb sin2 θ0

·



∞∑

n=−∞
a(q)
n

n

ρ
(q)
2

H
(q)
n2 e

(q)
ϕ2e

(q)
2 +

N∑
l=1
l �=q

∞∑
n=−∞

a(l)
n

n

ρ
(l)
2

H
(l)
n2e

(l)
ϕ2e

(l)
2




+
jωµb
kb0



∞∑

n=−∞
b(q)n H

(q)′

n2 e
(q)
ϕ2e

(q)
2 +

N∑
l=1
l �=q

∞∑
n=−∞

b(l)n H
(l)′

n2 e
(l)
ϕ2e

(l)
2



(6c)
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H
(q)
ϕ2 = H

(q)
ϕinc−

jωεb
kb0



∞∑

n=−∞
a(q)
n H

(q)′

n2 e
(q)
ϕ2e

(q)
2 +

N∑
l=1
l �=q

∞∑
n=−∞

a(l)
n H

(l)′

n2 e
(l)
ϕ2e

(l)
2




+
cos θ0

kb sin2 θ0



∞∑

n=−∞
b(q)n

n

ρ
(q)
2

H
(q)
n2 e

(q)
ϕ2e

(q)
2 +

N∑
l=1
l �=q

∞∑
n=−∞

b(l)n
n

ρ
(l)
2

H
(l)
n2e

(l)
ϕ2e

(l)
2




(6d)

where H
(q)
n2 = H

(2)
n (kb0ρ

(q)
2 ) is the nth-order Hankel function of the

second kind, H
(q)′

n2 = H
(2)′
n (kb0ρ

(q)
2 ) denotes the derivative of H

(q)
n2

with respect to its argument, e
(q)
ϕ2 = ejnϕ

(q)
2 , and a(b)(q)n (q = 1, 2, · · · ,

N) are the unknown scattering coefficients.
The approximate boundary conditions for the helical conductance

on the surface ρ
(q)
2 = R

(q)
2 are

E
(q)
z1 = E

(q)
z2 , E

(q)
ϕ1 = E

(q)
ϕ2 , E

(q)
ϕ1 + E

(q)
z1 tan Ψ(q) = 0,

H
(q)
ϕ1 +H

(q)
z1 tan Ψ(q) = H

(q)
ϕ2 +H

(q)
z2 tan Ψ(q).

(7a)

For the eccentric bianisotropic coating with T-strips (Ψ(q) = 0), we
have

E
(q)
z1 = E

(q)
z2 , E

(q)
ϕ1 = E

(q)
ϕ2 = 0, H

(q)
ϕ1 = H

(q)
ϕ2 . (7b)

while for L-strips (Ψ(q) = 90◦), we get

E
(q)
z1 = E

(q)
z2 = 0, E

(q)
ϕ1 = E

(q)
ϕ2 , H

(q)
z1 = H

(q)
z2 . (7c)

To enforce the above boundary conditions at ρ
(q)
2 = R

(q)
2 to be sat-

isfied, the translational addition theorem for the cylindrical Hankel
function, H

(l)
n2 , should be employed, i.e.,

H(2)
n

(
kb0ρ

(l)
2

)
einϕ

(l)
2

=
+∞∑

m=−∞
H

(2)
m−n (kb0Dql)Jm

(
kb0ρ

(q)
2

)
e
i
[
mϕ

(q)
2 −(m−n)ϕql

] (8a)
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and

D2
ql = ρ′q

2 + ρ′l
2 − 2ρ′qρ

′
l cos

(
ϕ′q − ϕ′l

)
(8b)

ϕql =




cos−1

(
ρ′q cosϕ′q − ρ′l cosϕ′l

Dql

)
, ρ′q sinϕ′q ≥ ρ′l sinϕ

′
l,

− cos−1

(
ρ′q cosϕ′q − ρ′l cosϕ′l

Dql

)
, ρ′q sinϕ′q < ρ′l sinϕ

′
l.

(8c)

Finally, N sets of equation for N cylinders can be derived for de-
termining the unknown scattering coefficients a(b)(q)n (q = 1, 2, · · · , N)
and the tedious mathematical manipulations are suppressed here.
Therefore, by using the large argument approximation of the Hankel
function, both the co- and the cross-polarized scattering cross sections
of the above multiple cylinders can be calculated by

σco(ϕ) =
4

kb sin4 θ0|E0|2

∣∣∣∣∣∣
N∑
q=1

ejkb0 cos(ϕ′q−ϕ)
∞∑

n=−∞
a(q)
n jnejnϕ

∣∣∣∣∣∣ (9a)

σcross(ϕ) =
4ω2µ2

b

k3
b sin4 θ0|E0|2

∣∣∣∣∣∣
N∑
q=1

ejkb0 cos(ϕ′q−ϕ)
∞∑

n=−∞
b(q)n jnejnϕ

∣∣∣∣∣∣ . (9b)

For the case of TEz-wave obliquely incidence, σco(cross)(ϕ) can also be
calculated by following the similar way as above.

4. NUMERICAL RESULTS AND DISCUSSION

Of particular interest here are the effects of the helical conductance of
the surface on the co- and cross-polarized scattering cross sections of
the composite, eccentric bianisotropic cylinder array. Therefore some
computer codes have been developed for calculating the σco,cross for
the TMz-wave obliquely incidence. For practical consideration, in the
following numerical examples we let εb = ε0 and µb = µ0 .

At first, Fig. 2 depicts the σco(cross) as a function of ϕ for the case of
four composite bianisotropic cylinders corresponding to different twist
angles ψ(q)(q = 1, 2, 3, 4), respectively.
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Figure 2. σco(cross) versus ϕ for four bianisotropic eccentric cylinders
possessing helical conductance of the surface. f = 10 GHz, N0 ≥
8, E0 = 1,
kbρ
′
q = 10.0, ϕ′q = 0◦, 90◦, 180◦, 270◦, kbR

(q)
1 = 1.0, kbR

(q)
2 = 2.0,

η
(q)
z =η

(q)
ϕ =0.5(1.0−j1.0)η0, µ

(q)
2 =µ0, µ

(q)
1 =µ0ω

(q)
0 ω

(q)
m /

[
ω

(q)
0

2
−ω2

]
,

µ
(q)
12 =−µ0ωω

(q)
m /

[
ω

(q)
0

2
−ω2

]
, M

(q)
s µ0 = 0.16T, ω(q)

m = 2.21×105M
(q)
s ,

ω
(q)
0 /ω

(q)
m = 0.3, q = 1, 2, 3, 4,

[
ε(q)

]
= ε0


 4.0 −j0.5 0
j0.5 4.0 0
0 0 4.5


 ,

[
ξ
(q)
e

]
= −

[
ξ
(q)
m

]
=
√
µ0ε0


 j0.5 −j0.3 0
j0.3 j0.5 0
0 0 j0.6


 (D∞)(C∞)).

(a) kbd
(q) = 0.5, ϕ0 = θ0 = 45◦, ψ(q) = 30◦;

(b) kbd
(q) = 0.5, ϕ0 = θ0 = 45◦, ψ(q) = 60◦;

(c) kbd
(q) = 0.5, ϕ0 = θ0 = ψ(q) = 45◦;

(d) kbd
(q) = 0.0, ϕ0 = θ0 = ψ(q) = 45◦ (concentric case).
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In Fig. 2, four composite cylinders are located at kbρ
′
q = 10.0, and

ϕ′q = 0◦, 90◦, 180◦, and 270◦, respectively. The bianisotropic coating
is lossless and its four constitutive tensors is assumed to be in the form
of the magnetic group of symmetry D∞(C∞) [16]. It is clear that both
σco and σcross are, generally speaking, strongly governed by the twist
angle ψ(q) . Especially for case (c), σco(cross) are much larger than
that of case (a) or (b), and nearly resonant scattering is expected un-
der such circumstances. We know that at low-frequency the resonance
phenomenon for a magnetodielectric rod with an anisotropic helical
conductance of the surface has already been examined in [4]. Interest-
ingly, for the concentric case (d), σco(cross) are much lower than that of
case (c), and the resonant scattering effect is disappear. Here, it should
be pointed out that the convergence behavior of the truncation terms
in the series summation has also been checked for above calculations,
and Table 1 lists some values of σco(cross) corresponding to cases (a)
and (c), respectively. It is obvious that at lest five-digit accuracy can
be achieved for N0 ≥ 10 . On the other hand, if θ0 approaches 0◦ or
180◦, more terms should be kept in the series summations.

(a) (c)
M σco σcross σco σcross

2 3.62182 2.95561 57.22894 46.99395
3 2.90889 2.37656 31.39699 20.90939
4 2.84134 2.38254 28.87429 19.23102
5 2.84297 2.37451 28.97975 19.31200
6 2.84260 2.37440 28.96073 19.30056
7 2.84257 2.37435 28.95895 19.29959
8 2.84256 2.37435 28.95870 19.29945
9 2.84256 2.37435 28.95866 19.29942

10 2.84256 2.37435 28.95865 19.29942
11 2.84256 2.37435 28.95865 19.29942

Table 1. σco(cross) against N0(m,n = −N0, · · · , N0) for cases (a)
(ϕ = 225◦) and (c) (ϕ = 327◦) .
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Fig. 3 shows the co- and cross-polarized scattering characteristics
of four composite uniaxal bianisotropic cylinders (σco(cross) ≥ 0) , and
the twist angle is chosen to be in different values.

In Fig. 3, the four constitutive tensors of the uniaxial bianisotropic
coating are in the form of the magnetic group D∞ . For curve (a) we
chose ϕ0 = θ0 = ψ(q) = 45◦ , while curve (b) stands for the normally
incident case (θ0 = 90◦) . Under such conditions, the magnitude of
σcross is much lower than that of curve (a) and even for the co-polarized
component. Comparing curve (c) with (d), it is clear that the cross-
polarized scattering effect is not enhanced for curve (d) even if we let
ϕ0 = θ0 = ψ(q) = 60◦ . On the other hand, it should be noted that
the above four cylinders possess double ‘chiralities’ or double helicals:
one is presented by the cross-coupling tensors

[
ξ
(q)
e

]
and

[
ξ
(q)
m

]
of the

uniaxial form (
[
ξ
(q)
m

]
= −

[
ξ
(q)
e

]
), and the other is resulted from the

helical conductance of the surface described by the twist angle ψ(q) .
Various numerical experiments prove that, for symmetrical incidence
ϕ0 = 0◦(180◦),

σco(cross)
(
θ0, ψ

(q),
[
ξ(q)
e

]
,
[
ξ(q)
m

])

= σco(cross)
(
180◦ − θ0, 180◦ − ψ(q),

[
ξ(q)
m

]
,
[
ξ(q)
e

])
;

(10a)

and for normally incidence θ0 = 90◦ ,

σco(cross)
(
ϕ0, ψ

(q),
[
ξ(q)
e

]
,
[
ξ(q)
m

])

= σco(cross)
(
−ϕ0, 180◦ − ψ(q),

[
ξ(q)
m

]
,
[
ξ(q)
e

])
;

(10b)

where ψ(q) → 180◦ − ψ(q) and exchanging the position of
[
ξ
(q)
e

]
and[

ξ
(q)
m

]
in (10) means that, physically, reverse the rotations of the double

helicals simultaneously. (10) has no relation to the operating frequency,
the geometrical size or location of each cylinder array, and it also holds
true for the TEz-wave incidence.

Furthermore, Fig. 4 depicts the σco,cross as a function of ϕ for four
composite uniaxal bianisotropic cylinders with T-strips (ψ(q) = 0◦) .

In Fig. 4, curve (a) is the obliquely incidence and curve (b) is just the
normally incidence. It is noted that for curve (a), the cross-polarized



232 Yin and Li

Figure 3. σco(cross) versus ϕ for four uniaxial bianisotropic eccentric
cylinders possessing helical conductance of the surface. The parameters
are the same as Fig. 2, except that

[
ε(q)

]
= ε0


 4.0 0 0

0 4.0 0
0 0 4.5


 ,

[
µ(q)

]
= µ0


 1.0 0 0

0 1.0 0
0 0 1.5


 ,

[
ξ
(q)
e

]
= −

[
ξ
(q)
m

]
=
√
µ0ε0


 j0.6 0 0

0 j0.6 0
0 0 j0.8


 (D∞),

(a) ϕ0 = θ0 = ψ(q) = 45◦ (circular dot);
(b) θ0 = 90◦, ϕ0 = ψ(q) = 45◦ (square dot);
(c) ϕ0 = θ0 = 45◦, ψ(q) = 60◦ (circular dot);
(d) ϕ0 = θ0 = ψ(q) = 60◦ (square dot).
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Figure 4. σco(cross) versusϕ for four uniaxial bianisotropic eccentric
cylinders with T-strips. The parameters are the same as Fig. 3, except
that (a) ϕ0 = θ0 = 45◦ (circular dot) and (b) θ0 = 90◦, ϕ0 = 45◦

(square dot).

scattering effect is enhanced greatly and σcross reaches the maximum
in the nearly forward direction ϕ = 225◦ . While for curve (b), since
θ0 = 90◦ , no cross-polarized scattered field component can be expected
for the T-strips case. Also, numerical experiments prove that:

σco
(
θ0 = 90◦, ϕ0,

[
ξ(q)
e

]
,
[
ξ(q)
m

]
, ϕ

)

= σco
(
θ0 = 90◦,−ϕ0,

[
ξ(q)
m

]
,
[
ξ(q)
e

]
, 360◦ − ϕ

) (11a)

σco(cross)
(
θ0, ϕ0 = 0◦(180◦),

[
ξ(q)
e

]
,
[
ξ(q)
m

])

= σco(cross)
(
180◦ − θ0, ϕ0 = 0◦(180◦),

[
ξ(q)
m

]
,
[
ξ(q)
e

])
.

(11b)

The equation (11b) is also true for the magnetic group D∞(C∞)
(in Fig. 2).

Finally, Fig. 5 depicts the co- and cross-polarized scattering charac-
teristics of four composite uniaxial bianisotropic cylinders with L-strips
(ψ(q) = 90◦) .

In Fig. 5, it is interesting to note that, for both constitutive mod-
els described by the magnetic groups D∞ and D∞h(C∞ν) [17], the
co-polarized scattered field component is just the same for either



234 Yin and Li

Figure 5. σco(cross) versus ϕ for four uniaxial bianisotropic eccentric
cylinders with L-strips. The parameters for (a) and (b) are the same
as Fig. 4, i.e.,

for (a) (b):
[
ξ
(q)
e

]
= −

[
ξ
(q)
m

]
=
√
µ0ε0


 j0.6 0 0

0 j0.6 0
0 0 j0.8


 (D∞);

for (c) (d):
[
ξ
(q)
e

]
=−

[
ξ
(q)
m

]
=
√
µ0ε0


 0 −j0.6 0
j0.6 0 0
0 0 0


(D∞h(C∞ν));

for (a) (c) ϕ0 = θ0 = 45◦ ; and
for (b) (d) θ0 = 90◦, ϕ0 = 45◦ .
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ϕ0 = θ0 = 45◦ or θ0 = 90◦, ϕ0 = 45◦ . The main deference be-
tween D∞ and D∞h(C∞ν) is that the cross-polarized effect in the
scattered field is different for obliquely incidence. Relatively speaking,
for D∞h(C∞ν) the magnitude of σcross is much higher than that of
D∞ . Also, as the above T-strips case, σcross is zero for the L-strips
for normally incidence, and (ψ(q) = 90◦)

σco
(
θ0, ϕ0,

[
ξ(q)
e

]
,
[
ξ(q)
m

]
, ϕ

)
(12a)

= σco
(
180◦ − θ0,−ϕ0,

[
ξ(q)
m

]
,
[
ξ(q)
e

]
, 360◦ − ϕ

)
(D∞)

σco(cross)
(
θ0, ϕ0,

[
ξ(q)
e

]
,
[
ξ(q)
m

]
, ϕ

)
(12b)

= σco(cross)
(
180◦ − θ0,−ϕ0,

[
ξ(q)
m

]
,
[
ξ(q)
e

]
, 360◦ − ϕ

)
[D∞h(C∞ν)] .

5. CONCLUSION

In this study, our attention has been paid to the scattering from mul-
tiple composite bianisotropic cylinders possessing the right- and left-
handed helical conductances of the surfaces, and some special infor-
mation has been given about such unique structure. The above results
show that, both the co- and the cross-polarized scattered cross sections
of the scatterers are very sensitive to the twist angle, and its effect on
the scattering of cylindrical objects is just diverse. For instance, under
some circumstances, the resonant scattering phenomenon of the com-
posite bianisotropic cylinders can be expected under the TMz-wave
incidence.
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