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1. INTRODUCTION

Recently, there has been a great interest in studying the electromag-
netic wave scattering from an object situated above a rough surface
[1–7]. Simulation techniques for electromagnetic wave scattering by
arbitrarily shaped objects in free space are well developed using wire
[8–10] and surface-patch models [11–18]. The theory and numerical
approaches associated with objects near flat interfaces of layered me-
dia have also been studied extensively by many researchers [7, 19–30].
However, considering the interface to be a rough surface is a new chal-
lenge, and little work has been reported. In theory, the standard MoM
can be used to solve for the unknowns both on the object and the rough
surface [4, 28, 31]. However, the discretization of the rough surface sig-
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Figure 1. Configuration of the problem.

nificantly increases the computational resource requirements compared
to calculating the scattering from the object alone. Therefore little lit-
erature exists on the study of scattering for full-scale geometry.

In this paper, we present a hybrid SPM/MoM technique to calculate
the EM scattering from a 3-D conducting object above a rough surface.
In this hybrid technique, the Green’s function and surface variables are
expanded in terms of the surface height function on the mean surface,
and the electric integral equations based on the extinction theorem and
the surface boundary conditions are decomposed into different orders.
Each order represents a flat-surface scattering problem with the same
geometry of the object and different equivalent sources, so that it can
be solved efficiently by using the dyadic Green’s function for layered
media. The separation of the solution into different orders also helps
us identify and characterize the individual interaction terms between
the object and the rough surface.

2. CONFIGURATION AND FORMULATION

Consider an electromagnetic wave Ei(r̄) incident upon a perfectly con-
ducting object with arbitrary shape S1 above a rough surface Sr as
shown in Fig. 1. The upper and lower spaces V1 and V2 are homo-
geneous and isotropic media characterized by ( ε1, µ1 ) and ( ε2, µ2 ),
respectively. The rough surface profile is defined by the surface height
function f(r̄′⊥) with mean surface So coincident with the xy-plane .
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2.1 Electric Field Integral Equations

On the perfectly conducting surface of the object, the tangential
electric field is zero. Thus we can write the electric field integral equa-
tion for r̄ ∈ S1 as(

Ei(r̄) +
∫∫

Sr

dS′
{
iωµ1G1(r̄, r̄′) ·

[
n̂1(r̄′)×H1(r̄′)

]
+∇×G1(r̄, r̄′) ·

[
n̂1(r̄′)× E1(r̄′)

]}

+iωµ1

∫∫
S1

dS′ G1(r̄, r̄′) · J1(r̄′)

)
×n̂o(r̄) = 0. (1)

By applying the extinction theorem, we get for r̄ ∈ V2

Ei(r̄) +
∫∫

Sr

dS′
{
iωµ1G1(r̄, r̄′) ·

[
n̂1(r̄′)×H1(r̄′)

]
+∇×G1(r̄, r̄′) ·

[
n̂1(r̄′)× E1(r̄′)

]}
+ iωµ1

∫∫
S1

dS′ G1(r̄, r̄′) · J1(r̄′) = 0, (2)

and for r̄ ∈ V1∫∫
Sr

dS′
{
iωµ2G2(r̄, r̄′) ·

[
n̂2(r̄′)×H2(r̄′)

]
+∇×G2(r̄, r̄′) ·

[
n̂2(r̄′)× E2(r̄′)

]}
= 0, (3)

where G1 and G2 are dyadic Green functions for unbounded regions
with ( ε1, µ1 ) and ( ε2, µ2 ), respectively. The vector n̂1(r̄′) denotes a
local normal pointing from the rough surface Sr to the upper region
V1 . The vector n̂2(r̄′) is anti-parallel to n̂1(r̄′) , i.e., n̂2(r̄′) = −n̂1(r̄′) .
E1(r̄′) and H1(r̄′) are electric and magnetic fields on the rough surface
in region V1 , while E2(r̄′) and H2(r̄′) are surface fields on Sr in
region V2 . J1(r̄′) is the induced surface current on the object. If
region V2 is dielectric, the tangential fields are continuous, thus

n̂1(r̄′)×H1(r̄′) = n̂1(r̄′)×H2(r̄′) ≡
dr̄′⊥
dS′η1

ā(r̄′⊥), (4)

n̂1(r̄′)× E1(r̄′) = n̂1(r̄′)× E2(r̄′) ≡
dr̄′⊥
dS′

b̄(r̄′⊥), (5)
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where ā(r̄′⊥) and b̄(r̄′⊥) are new surface variables defined on the mean
surface So , η1 is the characteristic impedance of the upper region V1 ,
i.e., η1 = (µ1/ε1)1/2 , and dr̄′⊥ is the projection of the infinitesimal
area dS′ on the mean surface So . With the new surface variables, we
can rewrite the integral equations as(

Ei(r̄) +
∫∫

So

dr̄′⊥
{
ik1G1

(
r̄, r̄′

)
· ā(r̄′⊥) +∇×G1

(
r̄, r̄′

)
· b̄(r̄′⊥)

}

+iωµ1

∫∫
S1

dS′G1(r̄, r̄′) · J1(r̄′)
)
× n̂o(r̄) = 0 for r̄ ∈ S1, (6)

Ei(r̄) +
∫∫

So

dr̄′⊥
{
ik1G1

(
r̄, r̄′

)
· ā(r̄′⊥) +∇×G1

(
r̄, r̄′

)
· b̄(r̄′⊥)

}

+ iωµ1

∫∫
S1

dS′G1(r̄, r̄′) · J1(r̄′) = 0 for r̄ ∈ V2, (7)

∫∫
So

dr̄′⊥

{
ik2

η2

η1
G2

(
r̄, r̄′

)
· ā(r̄′⊥) +∇×G2(r̄, r̄′) · b̄(r̄′⊥)

}
= 0

for r̄ ∈ V1. (8)

Theoretically, given the rough surface Sr and the object surface pro-
file S1 , the unknown surface variables ā(r̄′⊥), b̄(r̄′⊥) and the induced
current J1(r̄′) can be solved from Eqs. (6)–(8). For the special case in
which the interface is flat, the surface variables ā(r̄′⊥) and b̄(r̄′⊥) only
have horizontal components, and the local coordinate r̄′ in the dyadic
Green functions G1(r̄, r̄′) and G2(r̄, r̄′) can be replaced by r̄′⊥ .

2.2 Expansion of Green’s Function and Surface Variables

We assume that the rough surface height is small. Therefore the
scalar Green’s function gα in region Vα (where α = 1, 2 ) can be
expanded in terms of the surface height function f(r̄′⊥) on the mean
surface So ,

gα(r̄, r̄′) = gα
(
r̄, r̄′⊥ + ẑf(r̄′⊥)

)
=
∞∑
m=0

1
m!

∂m

∂z′m
gα

(
r̄, r̄′⊥

)
fm(r̄′⊥)

=
∞∑
m=0

1
m!

∂m

∂zm
gα

(
r̄, r̄′⊥

) (
−f(r̄′⊥)

)m
, (9)
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in which the following property of the scalar Green’s function has been
used:

∂m

∂z′m
gα

(
r̄, r̄′

)
= (−1)m

∂m

∂zm
gα

(
r̄, r̄′

)
. (10)

Thus the dyadic Green’s function can be expressed as

Gα(r̄, r̄′) =
(
I +

1
k2
α

∇∇
)
gα(r̄, r̄′)

=
∞∑
m=0

1
m!

(
−f(r̄′⊥)

)m ∂m

∂zm
Gα

(
r̄, r̄′⊥

)
. (11)

Similarly, the surface variables and induced current can be written as
series expansions as follows:

J1(r̄′) =
∞∑
m=0

J
(m)
1 (r̄′), (12)

ā(r̄′⊥) =
∞∑
m=0

[
ā

(m)
⊥ (r̄′⊥) + ẑa(m)

z (r̄′⊥)
]
, (13)

b̄(r̄′⊥) =
∞∑
m=0

[
b̄
(m)
⊥ (r̄′⊥) + ẑb(m)

z (r̄′⊥)
]
. (14)

In Eqs. (13) and (14), the separation of the z-components for the
surface variables ā and b̄ allows the only unknown surface variables
to become the tangential components since the z-components of the
m-th order can be expressed in terms of the tangential components
of order (m−1 ), as we will see below. By the definition of ā and b̄
[Eqs. (4) and (5)], the following identities hold:

n̂1(r̄′⊥) · ā(r̄′⊥) = 0, (15)
n̂1(r̄′⊥) · b̄(r̄′⊥) = 0, (16)

where

n̂1(r̄′⊥) =
−∇′⊥f(r̄′⊥) + ẑ∣∣−∇′⊥f(r̄′⊥) + ẑ

∣∣ . (17)

Substituting the series expansions of ā and b̄ , Eqs. (13) and (14), into
Eqs. (15) and (16), respectively, and assuming that ∂f(r̄′⊥)/∂x′ and
∂f(r̄′⊥)/∂y′ are of the same order as k1f(r̄′⊥) , we then get the m-th



320 Zhang et al.

order z-components of the surface variables ā and b̄ in terms of their
(m−1 )-th order tangential components:

a(m)
z (r̄′⊥) = ∇′⊥f(r̄′⊥) · ā(m−1)

⊥ (r̄′⊥), (18)

b(m)
z (r̄′⊥) = ∇′⊥f(r̄′⊥) · b̄(m−1)

⊥ (r̄′⊥). (19)

2.3 The n-th Order Equations

Substituting the series expansion for the dyadic Green’s function
Eq. (11) and the surface variables ā and b̄ as in Eqs. (13) and (14)
into the integral equations (6)–(8), we can derive the following n-th
order equations in terms of the surface height function f(r̄′⊥) :(
E

(n)
i (r̄)+

∫∫
So

dr̄′⊥
{
ik1G1

(
r̄, r̄′⊥

)
· ā(n)
⊥ (r̄′⊥)+∇×G1

(
r̄, r̄′⊥

)
· b̄(n)
⊥ (r̄′⊥)

}

+iωµ1

∫∫
S1

dS′G1(r̄, r̄′) · J (n)
1 (r̄′)

)
× n̂o(r̄) = 0 for r̄ ∈ S1, (20)

E
(n)
i (r̄)+

∫∫
So

dr̄′⊥
{
ik1G1

(
r̄, r̄′⊥

)
· ā(n)
⊥ (r̄′⊥)+∇×G1

(
r̄, r̄′⊥

)
· b̄(n)
⊥ (r̄′⊥)

}

+ iωµ1

∫∫
S1

dS′G1(r̄, r̄′) · J (n)
1 (r̄′) = 0 for r̄ ∈ V2, (21)

E
(n)
i2 (r̄)+

∫∫
So

dr̄′⊥

{
ik2

η2

η1
G2

(
r̄, r̄′⊥

)
· ā(n)
⊥ (r̄′⊥) +∇×G2(r̄, r̄′⊥) · b̄(n)

⊥ (r̄′⊥)
}

= 0 for r̄ ∈ V1, (22)

where for n = 0 ,

E
(0)
i (r̄) = Ei(r̄), (23)

E
(0)
i2 (r̄) = 0, (24)

for n ≥ 1 ,

E
(n)
i (r̄) =

n∑
m=1

1
m!

∫∫
dr̄′⊥

[
−f(r̄′⊥)

]m
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∂m

∂zm

{
ik1G1

(
r̄, r̄′⊥

)
·ā(n−m)
⊥ (r̄′⊥)+∇×G1

(
r̄, r̄′⊥

)
·b̄(n−m)
⊥ (r̄′⊥)

}

+
n∑

m=1

1
(m− 1)!

∫∫
dr̄′⊥

[
−f(r̄′⊥)

]m−1

∂m−1

∂zm−1

{
ik1G1

(
r̄, r̄′⊥

)
· ẑ

[
∇′⊥f(r̄′⊥) · ā(n−m)

⊥ (r̄′⊥)
]

+∇×G1

(
r̄, r̄′⊥

)
· ẑ

[
∇′⊥f(r̄′⊥) · b̄(n−m)

⊥ (r̄′⊥)
]}

, (25)

E
(n)
i2 (r̄)=

n∑
m=1

1
m!

∫∫
dr̄′⊥

[
−f(r̄′⊥)

]m
∂m

∂zm

{
ik2η2

η1
G2

(
r̄, r̄′⊥

)
·ā(n−m)
⊥ (r̄′⊥)+∇×G2(r̄, r̄′⊥)·b̄(n−m)

⊥ (r̄′⊥)
}

+
n∑

m=1

1
(m− 1)!

∫∫
dr̄′⊥

[
−f(r̄′⊥)

]m−1

∂m−1

∂zm−1

{
ik2

η2

η1
G2

(
r̄, r̄′⊥

)
· ẑ

[
∇′⊥f(r̄′⊥) · ā(n−m)

⊥ (r̄′⊥)
]

+∇×G2(r̄, r̄′⊥) · ẑ
[
∇′⊥f(r̄′⊥) · b̄(n−m)

⊥ (r̄′⊥)
]}

. (26)

Comparing the zeroth order ( n = 0 ) integral equations with Eqs. (6)–
(8) for the flat interface ( f(r̄′⊥) = 0 ), we see that they are the same
except adding a superscript (0) to the surface variables ā⊥ and b̄⊥
and to the induced current J1 . Therefore, the solutions ā

(0)
⊥ , b̄

(0)
⊥ ,

and J
(0)
1 for the zeroth order equations should be the same as the ones

for Eqs. (6)–(8) in which the rough surface is considered to be flat. For
the higher order equations ( n ≥ 1 ), we find that they are also in the
same form as the zeroth order equations, except for the substitution
of Ei by E

(n)
i , and the additional “source” term E

(n)
i2 in the lower

region. Therefore we only need to know how to solve the zeroth order
equations, i.e., the equations for an object over a flat interface.

Since the equations of any order are equivalent to the ones for a
flat interface, they can be rewritten by introducing the dyadic Green’s
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function for layered media. The advantage of this approach is avoiding
to solve surface unknowns ā

(n)
⊥ and b̄

(n)
⊥ on the interface. Only the

induced current J
(n)
1 on the conducting body needs to be solved for.

Therefore both the computational time and memory requirement can
be dramatically reduced.

2.4 Application to Perfectly Conducting Rough Surface

As an example, we now consider the rough surface to be perfectly
conducting. In this case the zeroth order electric field integral equation
(EFIE) can be written as

n̂o(r̄)×
(
E

(0)
i (r̄) + E

(0)
r (r̄) + iωµ1

∫
S1

dS′GL(r̄, r̄′) · J (0)
1 (r̄′)

)
= 0

for r̄ ∈ S1, (27)

and the n-th order ( n ≥ 1 ) EFIE can be written as

n̂o(r̄)×
(
E

(n)
i (r̄) + E

(n)
r (r̄) + iωµ1

∫
S1

dS′GL(r̄, r̄′) · J (n)
1 (r̄′)

)
= 0

for r̄ ∈ S1, (28)

where

E
(n)
i (r̄)=

n∑
m=1

1
m!

∫∫
dr̄′⊥

[
−f(r̄′⊥)

]m ∂m

∂zm

{
ik1G1

(
r̄, r̄′⊥

)
· ā(n−m)
⊥ (r̄′⊥)

}

+
n∑

m=1

1
(m− 1)!

∫∫
dr̄′⊥

[
−f(r̄′⊥)

]m−1

∂m−1

∂zm−1

{
ik1G1

(
r̄, r̄′⊥

)
· ẑ

[
∇′⊥f(r̄′⊥) · ā(n−m)

⊥ (r̄′⊥)
]}

, (29)

and the dyadic Green’s function for a perfectly conducting interface is

GL(r̄, r̄′) = G1(r̄, r̄′)−G1(r̄, (I − 2ẑẑ) · r̄′) · (I − 2ẑẑ), (30)

where G1 is the dyadic Green’s function in the unbounded medium
of region V1 . The singularities of the dyadic Green’s functions in
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Figure 2. Radiation and reflection of the equivalent source.

Eqs. (27) and (28) can be reduced by using a triangular patch model
in [18] for the conducting surface of the object.

The surface field ā⊥ of lower order can be obtained from the lower
order scattered field due to object and equivalent source. For example,
the first order surface variable ā

(1)
⊥ can be calculated by using the

solution of the zeroth order induced current J
(0)
1 and the incident and

reflected magnetic fields in absence of the object,

ā
(0)
⊥ (r̄′⊥)=η1ẑ ×

(
H i1(r̄′⊥)+Hr1(r̄′⊥)+

∫
S1

dS′′∇′×GL(r̄′⊥, r̄
′′) · J (0)

1 (r̄′′)
)
.

(31)

The higher order ( n ≥ 2 ) surface variable ā
(n)
⊥ can be obtained simi-

larly but involving much more manipulation.
Up to the first order, the total returned field can be written as

Es(r̄) = Er(r̄) + Eb(r̄) + Ec(r̄) + Ed(r̄), (32)

where

Eb(r̄) = iωµ1

∫
S1

dS′GL(r̄, r̄′) · J (0)
1 (r̄′), (33)

Ec(r̄) = E
(1)
i (r̄) + E

(1)
r (r̄), (34)

Ed(r̄) = iωµ1

∫
S1

dS′GL(r̄, r̄′) · J (1)
1 (r̄′), (35)

and



324 Zhang et al.

E
(1)
i (r̄) = −ik1

∫∫
dr̄′⊥f(r̄′⊥)

∂

∂z
G1

(
r̄, r̄′⊥

)
· ā(0)
⊥ (r̄′⊥)

+ ik1

∫∫
dr̄′⊥G1

(
r̄, r̄′⊥

)
· ẑ

[
∇′⊥f(r̄′⊥) · ā(0)

⊥ (r̄′⊥)
]
. (36)

In Eq. (32), Er(r̄) is simply the reflected field from the flat inter-
face in absence of the conducting object. In the expression for Eb(r̄)
[Eq. (33)], the induced current J

(0)
1 is obtained by solving the integral

equation (27) with layered Green’s function, therefore the returned
field Eb(r̄) includes all interactions between object and flat interface.
Ec(r̄) in Eq. (34) is the sum of the radiated field from the “equivalent
source” and its reflection, as illustrated in Fig. 2. The reflected field
of the equivalent source can be obtained by writing the unbounded
dyadic Green’s function in integral form as in Appendix A, thus the
radiated field of the equivalent source E

(1)
i is expressed as the sum

of plane waves. By using the Fresnel reflection coefficient for each
plane wave component, it is easy to write the reflected field E

(1)
r by

multiplying with RTE and RTM to obtain the reflected TE and TM
waves, respectively. For a perfectly conducting surface RTE = −1 and
RTM = 1 , thus we find

E
(1)
r (r̄) = E

(1)
i (r̄). (37)

Therefore the return field due to the equivalent source is simply

Ec(r̄) = 2E(1)
i (r̄). (38)

It can also be shown that the returned field Ec(r̄) as in Eq. (38) is the
same as the first order SPM solution for a conducting rough surface if
we let the induced current J

(0)
1 = 0 when evaluating the surface field

ā
(0)
⊥ (r̄′⊥) in Eq. (31). Therefore, we call the return field Ec(r̄) the

“incoherent” returned field from the rough surface under the influence
of the object. The returned field Ed(r̄) is the radiated field of the first
order induced current J

(1)
1 excited by the “incoherent” field Ec(r̄) .

Since the layered Green’s function is used to calculate the induced
current J (1)

1 and its radiated field, the returned field Ed(r̄) includes all
multiple interactions between the object and the conducting interface.
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3. NUMERICAL RESULTS

In the numerical simulation, a horizontal conducting cylinder along
the x-axis with 2.0 λ in length and 1.0 λ in diameter is considered.
The distance between the bottom of the cylinder and the mean surface
height of the conducting rough surface is 0.1 λ so that strong inter-
action between object and rough surface can be expected. A rough
surface with the well-known Gaussian power spectrum is used for the
validation with the help of the standard method of moments (MoM).
The size of the rough surface is 15.0 λ by 15.0 λ . The deviation and
correlation length of the rough surface are σ = 0.03λ and l=1.0 λ ,
respectively. The incident wave Ei is tapered and formed as a sum-
mation of plane waves with Gaussian-shaped footprint on the mean
surface. This tapered incident wave satisfies Maxwell’s equations and
minimizes the edge effect in the numerical calculations. The factor
g , which is used to control the beam width of the tapered wave is
g = 3.0λ , so that the incident electric field magnitude on the rough
surface has dropped by a factor of 1/e at |r̄′⊥| = 3.0λ .

In the numerical calculation, the radar cross section (RCS) is defined
as

RCS = lim
r→∞

4πr2 |Es (θ, φ)|2

|Eo (θi, φi)|2
, (39)

where Eo is the maximum magnitude of the tapered incident electric
field on the mean surface So . For monostatic (backscattering) RCS,
the scattering angles are θ = θi and φ = φi . In the numerical simu-
lations for bistatic RCS, we let the polar angle θ be 40◦ and vary the
azimuthal angle φ from 0◦ to 360◦ . φ = 0◦ is the backscattering
direction. For the monostatic RCS simulations, the incident k̄i vector
remains in the xz-plane and the incident angle θi varies from 0◦ to
90◦ .

The plots shown in Fig. 3 and Fig. 4 are bistatic RCSs for the indi-
vidual terms of Eq. (32) for TE and TM incident waves, respectively.
The plot labeled as Er is the reflected field of the incident tapered
wave from the flat interface in absence of the object. A peak of co-
polarized component of Er appears in the specular direction φ = 180◦

as expected. The plot labeled as Eb is the returned field as in Eq. (33).
The Ec plot is evaluated by using Eq. (34), and the Ed plot is cal-
culated from Eq. (35). It can be seen that most of the energy of the
“incoherent” field Ec concentrates in the forward scattering direction.
The curves shown in the Eb plot represent the scattering from the ob-
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Figure 3. Bistatic RCS of individual terms for TE incident wave.

ject excited by the fields Ei and Er , while the secondary scattering
field in the Ed plot is the returned field from the object excited by
the “incoherent” field Ec from the rough surface. We note that the
cross-polarized returns VH and HV in the backscattering direction are
zero in the Eb plot. This is due to the symmetry of the geometry and
the incident wave. The secondary returned fields of cross-polarized VH
and HV in the plot labeled Ed are no longer zero in the backscatter-
ing direction due to the asymmetry of the “incoherent” field Ec . The
“incoherent” field Ec as well as the secondary returned field Ed from
the object are both proportional to the surface height function f(r̄′⊥)
of the rough surface. It can be easily checked that both Ec and Ed

become zero when the surface height function is zero.
The sum of the four terms Er +Eb +Ec +Ed as in Eq. (32) is the

total returned field up to the first order, and the corresponding RCS
are shown in Fig. 5 and Fig. 6 for TE and TM incident wave, respec-
tively. The bistatic RCS for the total returned field are compared with
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Figure 4. Bistatic RCS of individual terms for TM incident wave.

standard MoM results. In the MoM simulation, both the rough surface
and the conducting object are discretized and the surface unknowns
are solved together by using the conjugate gradient algorithm. The
plots in the top rows of Fig. 5 and Fig. 6 show the bistatic RCS of
the zeroth order solution using the hybrid technique and the standard
MoM solution. Good agreement is found comparing the results. The
co-polarized VV of the zeroth order solution matches better than the
co-polarized HH, since the TE incident wave may induce significant
currents on the front and back edges of the rough surface, which may
give more return for the MoM result. This edge effect can be mini-
mized if the TM incident wave is used (Fig. 6). In the simulations as
shown in the bottom rows of Fig. 5 and Fig. 6, a single rough surface
with Gaussian power spectrum is used. The deviation of the surface
height is σ = 0.03λ and the correlation length is l = 1.0λ . Again the
results show good agreement comparing the hybrid technique with the
standard MoM. It is noted that the curves are no longer symmetrical
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Figure 5. Bistatic RCS of the total returned field Er +Eb +Ec +Ed

for TE incident wave.

with respect to the plane of incidence when the surface is rough.
Monte Carlo simulation results with 100 realizations are shown

in Fig. 7 and Fig. 8 for TE and TM incident waves, respectively.
Rough surfaces with power law spectrum are generated and they are
statistically independent of each other. The power law spectrum is
W (k) = ao/k

4 , which more closely represents ocean surfaces than the
Gaussian power spectrum. Here k is the spatial wavenumber of the
rough surface and ao = 0.008/2π which is the amplitude used for the
Durden-Vesecky spectrum [32]. The upper cut-off spatial wavenumber
kh is chosen to be kh = 2.5k1 which corresponds to the band width
for 1/5λ1 spatial resolution of sampling on the rough surface, where
k1 and λ1 are electromagnetic wavenumber and wavelength of the in-
cident wave, respectively. The lower cut-off spatial wavenumber kl is
chosen according to the standard deviation of the rough surface height
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Figure 6. Bistatic RCS of the total returned field Er +Eb +Ec +Ed

for TM incident wave.
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Figure 7. Monte Carlo simulation of bistatic RCS of the total returned
field Er + Eb + Ec + Ed for TE incident wave.
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Figure 8. Monte Carlo simulation of bistatic RCS of the total returned
field Er + Eb + Ec + Ed for TM incident wave.

using the following relation:

σ2 =
∫

W (k)d2k = πao

(
1
k2
l

− 1
k2
h

)
. (40)

In Fig. 7 and Fig. 8, the deviations of the rough surface k1σ = 0.1, 0.2,
0.4 correspond to the lower cut-off spatial wavenumbers kl/k1 =
0.6131, 0.3137, 0.1578 , respectively. It is noted that the Monte Carlo
simulations converge with respect to the number of realizations. The
averaged cross-polarized RCS increases with the deviation of the rough
surface over a wide range of scattering angles.

Fig. 9 and Fig. 10 show the Monte Carlo simulation of monostatic
(backscattering) RCS for TE and TM incident waves, respectively.
Here 100 rough surfaces with power law spectrum and k1σ = 0.4 are
used. The backscattering direction varies from θ = 0◦ to θ = 90◦

with 45 steps in between. The azimuthal angle φ remains 0 degree.
We note that the cross-polarized VH and HV are significant in the
presence of a rough surface. Analytically the cross-polarized returns
should be zero for the considered geometry when the surface is flat. We
note that the non-zero values for flat surface are produced numerically.
Changes of co-polarized monostatic RCS due to the rough surface can
be found at some scattering angles. At small grazing angles, the rough
surface effect on co-polarized backscattering RCS is not significant. In
the standard MoM, the number of unknowns is 17,252 with the sam-
pling resolution being 1/5λ on the rough surface and the object. In
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Figure 9. Monte Carlo simulation of monostatic RCS of the total
returned field Er + Eb + Ec + Ed for TE incident wave.
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Figure 10. Monte Carlo simulation of monostatic RCS of the total
returned field Er + Eb + Ec + Ed for TM incident wave.

the hybrid technique, the number of unknowns is only 972 with the
same sampling resolution on the object. There is no need to solve for
surface unknowns on the rough surface using the hybrid technique.

4. CONCLUSION

This paper presents a hybrid technique of SPM and MoM for EM scat-
tering from an object above rough surface. With the expansion of the
Green’s function and surface variables in terms of the surface height
function on the flat mean surface, the electric field integral equations
are decomposed into different orders. The equations of each order rep-
resent the EM scattering problem with the same object above the mean
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surface and different incident field from an equivalent source which can
be evaluated by using lower order solutions. The equivalence with a flat
surface problem allows us to use the dyadic Green’s function for lay-
ered media, so that we do not need to solve for tangential fields on the
rough surface, leaving only unknowns on the conducting object. The
number of unknowns in the hybrid method is about 20 times less than
in the standard MoM. Therefore this hybrid technique demonstrates a
dramatic increase in computational efficiency without losing accuracy.
The separation of the return field into the sum of individual interaction
terms allows us to identify the coherent and incoherent returned field,
and thus to characterize the rough surface effects quantitatively.
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APPENDIX A.

The integral representation of the dyadic Green’s function in unbound-
ed space is given by [31]

G1(r̄, r̄′) = −ẑẑ δ(r̄, r̄
′)

k2
1

+




i

8π2

∫∫
dkxdky

1
k1z

[
ê(k1z)ê(k1z)+ĥ(k1z)ĥ(k1z)

]
eik̄1·(r̄−r̄

′)

z > z′,
i

8π2

∫∫
dkxdky

1
k1z

[
ê(−k1z)ê(−k1z)+ĥ(−k1z)ĥ(−k1z)

]
eiK1·(r̄−r̄′)

z < z′,
(41)

where

ê(±k1z) =
x̂ky − ŷkx√
k2
x + k2

y

, (42)

ĥ(±k1z) = ∓ k1z

k1

√
k2
x + k2

y

(x̂kx + ŷky) + ẑ

√
k2
x + k2

y

k1
, (43)
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k̄1 = kxx̂+ kyŷ + k1z ẑ, (44)
K1 = kxx̂+ kyŷ − k1z ẑ, (45)

k1z =
√
k2

1 − k2
x − k2

y. (46)
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