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1. INTRODUCTION

Wave scattering from random surfaces depends on different parame-
ters of surface depending on conditions. The important parameter of
the scattering process is the Rayleigh parameter Ra ≡ ν0σ , where
ν0 = k sin θ0 , θ0 is the grazing angle of the incident wave, k is a
wavenumber, ν0 is a vertical component of the incident wave vector,
and σ is the variance of the surface elevations.
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If Ra� 1 , the Bragg scattering mechanism works, and in this case
the scattering cross section Σ depends only on the spectrum of the
surface,

Σ ∼ Φ (q− q0) . (1)

Here, Φ is the Fourier transform of the correlation function Bζ (r) 1

of surface elevations ζ (r) , i.e.,

B (r) ≡
〈
ζ

(
r′

)
ζ

(
r + r′

)〉
,

( 〈· · ·〉 denotes the mean value) and

Φ (q− q0) =
1

4π2

∫∫
exp [−i (q− q0) r]Bζ (r) d2r,

Bζ (r) =
∫∫

exp (iqr) Φ (q) d2q =
∫∫

cos (qr) Φ (q) d2q.

(2)

In the case of Ra � 1 , the scattering cross section does not depend
on the probability distribution of elevations or surface slopes.

If Ra � 1 , the Bragg scattering mechanism does not work, and
several more complicated scattering theories must be applied. If the
curvature radii of the surface are much larger than the wavelength, we
can describe the scattering process using the Kirchhoff approximation.
In this case, the scattering cross section depends on the characteristic
function of differences in elevation at two arbitrary points, r1 and r2 :

〈exp {iα [ζ (r1)− ζ (r2)]}〉 , α = ν + ν0. (3)

Here, ν is the vertical wavenumber of the scattered wave. In the case
of very large k , only the linear term of expansion of ζ (r1)− ζ (r2) in
powers of (r1 − r2) is important,

ζ (r1)− ζ (r2) ≈ (r1 − r2)∇ζ (r2) + · · · .

In this case the Kirchhoff approximation reduces to the geometric
optics (GO) approximation and the scattering cross section depends

1 In the following we also use the structure function of the surface el-
evations, the mean square of the difference of elevations in two points,
Dζ (r′ − r′′) ≡

〈
[ζ (r′)− ζ (r′′)]2

〉
= 2 [Bζ (0)−Bζ (r′ − r′′)] . This

function is related to the spectrum Φ (q) by the formula Dζ (r) =
2

∫∫
[1− cos (qr)] Φ (q) d2q . See more details in [1].
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only on the probability distribution function (PDF) of surface slopes
∇ζ (r) . This result has a simple physical meaning: the scattering
cross section is proportional to the number of surface facets having the
appropriate slope, i.e., satisfying the condition of specular reflection.
Thus, the scattering cross section in the Kirchhoff case depends on a
quite different property of the surface: the PDF of differences in ele-
vation (the PDF of slopes, in the GO case) rather than on the surface
spectrum.

2. WHICH STATISTICAL CHARACTERISTICS OF THE
SURFACE COMPLETELY DESCRIBE THE
SCATTERING CROSS SECTION?

It is clear that, in general, the scattering cross section may depend not
only on both of these parameters (spectrum and 〈exp {iα [ζ (r1)−
ζ (r2)]}〉 ), but on some more complicated parameters of the surface.

It was shown by [2] that any solution of the scattering problem can
be presented as a functional, depending only on the functions of the
type

L (α, r) = exp [iαζ (r)] (4)

with different α and r . This means that the mean scattering cross
section Σ can be presented as a functional Taylor series of the form

Σ = A0 +
∫∫

d2r

∫
dαA1 (α, r) 〈L (α, r)〉

+
∫∫

d2r′
∫
dα′

∫∫
d2r′′

∫
dα′′A2

(
α′, r′;α′′, r′′

) 〈
L

(
α′, r′

)
L

(
α′′, r′′

)〉
+

∫∫
d2r′

∫
dα′

∫∫
d2r′′

∫
dα′′

∫
dα′′′

∫∫
d2r′′′

×A3

(
α′, r′;α′′, r′′, α′′′, r′′′

) 〈
L

(
α′, r′

)
L

(
α′′, r′′

)
L

(
α′′′, r′′′

)〉
+ · · · .

(5)
If we take into account only the four beginning terms of this expansion
(up to A4 ), as was shown in [2], we obtain an approximate formula
that includes in particular cases the Bragg scattering, the Kirchhoff
approximation, the small-slope approximation [3, 4], the tilt-invariant
approximation [5], and the double Kirchhoff approximation [6, 7]. The
mean values, appearing in (5) are characteristic functions (CFs) of
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one-point, two-point, etc., joint PDF of surface elevations, i.e.,

〈L (α, r)〉 = χ1 (α, r) = 〈exp [iαζ (r)]〉〈
L

(
α′, r′

)
L

(
α′′, r′′

)〉
= χ2

(
α′, r′;α′′, r′′

)
=

〈
exp

[
iα′ζ

(
r′

)
+ iα′′ζ

(
r′′

)]〉
· · ·

〈L (α1, r1) · · · L (αn, rn)〉 = χn (α1, r1; . . . ;αn, rn)
= 〈exp [iα1ζ (r1) + · · ·+ iαnζ (rn)]〉 .

(6)

Thus, to calculate all these mean values it is enough to know the cor-
responding CF. The more orders of the scattering iterative term we
consider, the more orders of CF are necessary.

The important property of scattering cross section Σ is its invari-
ance with respect to translations of the scattering surface as a whole.
If we denote the scattering cross section corresponding to the surface
z = ζ (r) as Σ [ζ (·)] , this property is expressed by the formula

Σ [ζ (·) + h] = Σ [ζ (·)] . (7)

It follows from this formula that Σ really depends only on such com-
binations of ζ that do not change during translations of the surface.
In other words, Σ may depend only on the differences of the type
ζ (r′)− ζ (r′′) .

In terms of CF (6) the invariance property (7) takes the form

〈
exp


i

n∑
j=1

αj [ζ (rj) + h]




〉
=

〈
exp


i

n∑
j=1

αjζ (rj) + ih
∑

αk




〉

=

〈
exp


i

n∑
j=1

αjζ (rj)




〉
.

(8)
It follows from this formula that the only CF that may enter in the
expression for Σ are those for which

n∑
k=1

αk = 0. (9)
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The general formula for the characteristic function satisfying the prop-
erty (9) is as follows (we use the special notation Θ for CF that satisfies
the condition (9)):

Θ (α) ≡
〈
exp

[
iα1

(
ζ1 − ζ ′1

)
+ · · ·+ iαn

(
ζn − ζ ′n

)]〉
. (10)

Here, ζk ≡ ζ (rk) , ζ ′k ≡ ζ (r′k) , and α′k = −αk . In fact, (10) is the
standard CF for differences (ζk − ζ ′k) . Note that some of ζk may
coincide with ζl or with ζ ′l ; for instance, ζ2 = ζ ′1 . Because of this the
total number of different points rk , r′j in formula (10) may be either
even or odd.

It follows from this analysis that the only statistical characteristics
necessary to describe the scattering cross section are the joint PDF or
the joint CF for differences in elevation at several points of the random
surface.2 Because of this the factor A1 (α, r) in (5) must be zero.

If we consider the formulae for different terms of expansion of Σ
obtained in [2], ( (3) corresponds to the first term of this expansion),
we can ascertain that all of them have the form (10).

Usually, in all theoretical (analytical and numerical) studies of the
rough-surface scattering problem, the Gaussian PDF assumption is
used. But many scattering surfaces have a PDF that differs from
this basic law. As an example, we present in Figure 2 the PDF of
water-surface elevations, obtained in [8] for wind-driven surface waves
corresponding to frictional velocity 1.24m·s−1 . The significant devi-
ation from the Gaussian PDF is evident. In [9] a statistical theory
of gravity waves was developed in which it was shown that because
of the nonlinearity of equations deviations from Gaussian PDF must
appear. The method of cumulants was used in this paper to describe
these deviations.

The question arises: How significant is this deviation for wave scat-
tering from the sea surface? This problem was discussed in [10–12].

To approach an answer to this question we developed in [13] a sta-
tistical model of the surface that possesses the following properties:
(1) It has the given PDF of elevations in any fixed point of the surface.
(2) It has the given anisotropic spectrum. (3) It is possible to find
explicit analytical formulae for any characteristic function of the type
(6) for any n . As was shown in [2], using this information we are able

2 If we are interested in the reflection coefficient, including its phase,
we also need information about the PDF of elevations.
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Figure 1. Measured PDF of elevations corresponding to the frictional
velocity U = 1.24 m/s appears as fluctuated line. Expansion suggested
by Longuet-Higgins [26] appears as dashed line; the eight-term Edge-
worth expansion, limited by four cumulants appears as dotted line.
This Figure is taken from [8]).

to find, in an analytical form, the mean values entering into scattering
theories.

The problem of how to construct a statistical model that satisfies
conditions 1 to 3 has an infinite number of solutions because there are
no restrictions on the highest (two-point, three-point, etc.) PDF. The
model developed in [13] is only one of many possibilities. Some related
problems were considered earlier in [14–17].

It is clear from the preceding analysis that statistics on differences in
elevation are more important for the scattering theory than statistics
on elevations. On the other hand, it is clear that if the spectrum of the
surface is anisotropic, that is, if it depends on the angle between the
wind direction and the wave-vector direction, we can expect that the
PDF of differences also may be anisotropic. The experimental data for
the PDF of slopes [18, 19] support this conclusion. Because of this,
we try in this paper to construct a statistical model of the surface
that satisfies the following conditions: (a) It has the given anisotropic
spectrum (or correlation or structure functions). (b) It has the given
joint PDF of slopes in two principal directions (for the wind-driven
surface waves, these directions are upwind and cross-wind.) (c) It is
possible to find the explicit analytical formulae for any characteristic
function for differences of the type (10) for any n .
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In most publications devoted to non-Gaussian surfaces, the cumu-
lant expansions (Edgeworth or Gram-Charlier series) were used. This
method is standard for describing non-Gaussian distributions. How-
ever, it is known that the PDF with the final number of cumulants
(except the Gaussian PDF) does not exist (see, e.g., [20]). Because of
this, the truncation of Edgeworth or Gram-Charlier expansions neces-
sarily leads to the appearance of negative probabilities (see example
on Figure 1, taken from the paper [8]):

These negative probabilities may affect the results of calculations of
scattering cross sections and violate the energy conservation law.

In describing the non-Gaussian multivariate PDF, we will use de-
composition of an arbitrary PDF in the sum of an auxiliary multivari-
ate Gaussian PDF (for a single random variable this method is some-
times used in the Monte Carlo simulation of a non-Gaussian PDF).
This approach replaces the conventional cumulant expansion. The
method suggested in this paper does not lead to negative probabilities
(see Figure 2) and, because of its simplicity, it successfully replaces
the cumulant expansion. The solution obtained is simple enough to
(1) perform all necessary calculations, and (2) obtain the analytical
formulae for joint CF of differences in elevation. It allows us to obtain
the scattering cross section in the Kirchhoff and other approximations
for non-Gaussian surfaces with the realistic anisotropic spectrum and
the PDF of the principal slopes.

The results obtained show that deviations from the Gaussian PDF
may be important and may cause differences in the scattering cross
section in several times.

To aid the reader’s understanding of this paper, we will first describe
its logical structure. We then consider the following problems, each of
which can be solved once the preceding problem has been solved. They
are:

A. Joint PDF of differences in elevation taken in two principal direc-
tions

We start with an examination of a joint non-Gaussian PDF
W (∆1,∆2) for two differences in elevation:

∆1 (l1) = ζ (r + l1m1)− ζ (r) , ∆2 (l2) = ζ (r + l2m2)− ζ (r) ,

taken in two principal directions: upwind, described by the unit vector
m1 , and cross-wind, described by the unit vector m2 . The func-
tion W (∆1,∆2) is approximated by the sum of the two-dimensional
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Figure 2. Non-Gaussian probability density function of elevations for
the frictional velocity 1.24 m/s taken from the paper [8] and its approx-
imation by the sum of four Gaussian terms. In contrast to the cumu-
lant expansion, no negative probabilities appear in this representation.
The sum of four Gaussian components does not exceed experimental
thresholds.

Gaussian PDF (12) having different positions and different matrixes
of second moments. The parameters of these auxiliary Gaussian PDFs
are expressed in terms of the (anisotropic) correlation (or structure)
function of the surface, which is assumed to be known from experi-
mental data. The formula (49) for characteristic function (CF) of this
non-Gaussian PDF thus obtained contains several uncertain numeri-
cal parameters: Pµ , λµ , κ1µ , and κ2µ . (The index µ denotes the
different Gaussian terms of decomposition).

B. Joint PDF of two principal slopes
From consideration of the particular case l1 , l2 → 0 , it is possible

to obtain the joint PDF (71) of two principal slopes, γ1 and γ2 , in
terms of the same uncertain parameters: Pµ , λµ , κ1µ , and κ2µ . All
these parameters can be determined from a comparison of the approx-
imate formula (71) with the experimental data. After finding these
parameters we can substitute them in the formula for the joint PDF
or the joint CF of two differences in elevation ∆1 and ∆2 . The result
is a formula that agrees with the correlation properties of the surface
and with the joint PDF of two principal slopes.

C. PDF of a single, arbitrarily directed, difference in elevations
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The next step is to find the PDF and CF of a single, arbitrarily
directed, difference in elevation,

∆
(
r′, r′′

)
= ζ

(
r′

)
− ζ

(
r′′

)
that can be easily expressed in terms of the joint CF of two differences
in elevation, taken in the principal directions. This CF is a superpo-
sition of the corresponding Gaussian CFs with the same parameters,
Pµ , λµ , κ1µ , and κ2µ . A particular case of this CF for l1 , l2 → 0
provides a CF for a slope in an arbitrary direction.

D. Joint PDF of an arbitrary number of arbitrarily directed differences
in elevation

The joint PDF P for M arbitrarily directed differences in elevation
also can be presented in the form of a superposition of M -dimensional
Gaussian PDF. The coefficients of this superposition do not depend
on M . Therefore, we can use the same parameters Pµ , λµ , κ1µ ,
and κ2µ to construct P . The function P , or the corresponding CF
(107) obtained in this way, describes the random surface with the given
anisotropic spectrum (or given structure function) and the given joint
PDF of two slopes (derivatives of elevation in two principal directions).

E. Scattering cross sections
Scattering cross sections from the absolutely reflecting interface can

be obtained for different approximations in terms of the obtained CF.
Numerical evaluation of the corresponding integrals in the Kirchhoff
approximation shows that deviation from the Gaussian distribution can
be very important and can cause a significant difference in scattering
cross sections, especially in the range of low grazing angles.

F. Universal angular dependence of the variance of slope
We show in Appendix A, Part II that only from the symmetry of

the spectrum of surface with respect to wind direction does it follow
the universal dependence of slope variance

〈
γ2 (ψ)

〉
=

〈
γ2

1

〉
cos2 ψ +〈

γ2
2

〉
sin2 ψ on the angle ψ with wind direction.

3. JOINT PDF FOR UPWIND AND CROSS-WIND
DIFFERENCES IN ELEVATION

Let us consider the joint PDF for two finite differences in elevation,
∆1 and ∆2 , taken in upwind and cross-wind directions:

∆1 (l1) ≡ ζ (r + l1m1)− ζ (r) , ∆2 (l2) ≡ ζ (r + l2m2)− ζ (r) , (11)
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for arbitrary values of l1 and l2 . We assume that the joint PDF for ∆1

and ∆2 , the function W (∆1,∆2) , can be approximated by the sum of
two-dimensional Gaussian surfaces of the general type, Wµ (∆1,∆2) :

Wµ (∆1,∆2) =
1

2πσ1µσ2µ

√
1− ρ2

µ

× exp

{
−

(
∆1 −∆1,µ

)2

2σ2
1,µ

(
1− ρ2

µ

) −
(
∆2 −∆2,µ

)2

2σ2
2,µ

(
1− ρ2

µ

)
+

2ρµ
(
∆1 −∆1,µ

) (
∆2 −∆2,µ

)
2σ1,µσ2,µ

(
1− ρ2

µ

)
}
.

(12)

Each Gaussian surface over the plane (∆1,∆2) described by the func-
tion (12) is centered in the point(

∆1,µ,∆2,µ

)
and is characterized by the parameters σ1,µ , σ2,µ , and ρµ . These
parameters are expressed in terms of the mean values calculated with
the PDF Wµ (∆1,∆2) . We call them conditional mean values:

∆1,µ ≡
∫∫

Wµ (∆1,∆2) ∆1d∆1d∆2 = 〈∆1|µ〉 , (13)

∆2,µ =
∫∫

Wµ (∆1,∆2) ∆2d∆1d∆2 = 〈∆2|µ〉 , (14)

σ2
1,µ =

∫∫
Wµ (∆1,∆2)

(
∆1 −∆1,µ

)2
d∆1d∆2

=
〈
∆2

1

∣∣µ〉
− 〈∆1|µ〉2 =

∫∫
Wµ (∆1,∆2) ∆2

1d∆1d∆2 −∆2
1,µ,

(15)

σ2
2,µ =

∫∫
Wµ (∆1,∆2)

(
∆2 −∆2,µ

)2
d∆1d∆2

=
〈
∆2

2

∣∣µ〉
− 〈∆2|µ〉2 =

∫∫
Wµ (∆1,∆2) ∆2

2d∆1d∆2 −∆2
2,µ,

(16)

σ1,µσ2,µρµ =
∫∫

Wµ (∆1,∆2)
(
∆1 −∆1,µ

) (
∆2 −∆2,µ

)
d∆1d∆2

= 〈∆1∆2|µ〉 − 〈∆1|µ〉 〈∆2|µ〉 .
(17)
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We seek an approximation of the joint non-Gaussian PDF of two dif-
ferences in elevation ∆1 and ∆2 , the function W (∆1,∆2) , in the
form3

W (∆1,∆2) ≈
∑
µ

PµWµ (∆1,∆2) , (18)

where Pµ > 0 . Because each function Wµ is normalized, the normal-
ization condition for Wµ takes the form

∑
µ

Pµ = 1. (19)

Thus, we can consider the positive numbers Pµ as probabilities and
the functions Wµ (∆1,∆2) as conditional PDF for fixed µ .

Let us consider the joint CF for ∆1 and ∆2 :

Θ∆ (α1, l1;α2, l2) ≡ 〈exp i [α1∆1 (l1) + iα2∆2 (l2)]〉 . (20)

If we use the approximation (18) for W (∆1,∆2) , we obtain the cor-
responding approximation for the CF:

Θ∆ (α1, l1;α2, l2) ≈
∑
µ

PµΘ∆,µ (α1, l1;α2, l2)

=
∑
µ

Pµ exp
[
iα1∆1,µ + iα2∆2,µ

−1
2

(
α2

1σ
2
1,µ + 2α1α2σ1,µσ2,µρµ + α2

2σ
2
2,µ

)]
.

(21)

3 It was shown by D. DeWolf (Private communication, 1984 and [21])
for the one-dimensional case that any smooth function can be ap-
proximated by the sum of Gaussian functions. In the case of a two-
dimensional PDF a similar consideration can be performed. We start
from the identity W (x, y) =

∫∫
δ (x− x′) δ (y − y′)W (x′, y′)

dx′dy′. If we replace the product δ (x− x′) δ (y − y′) by the Gaussian
function of the type (12) with small σ1, σ2, we obtain the approximate
formula that becomes precise if σ1, σ2 → 0. If we replace the integral
by the finite sum, we obtain the approximate formula of the type (18)
which becomes precise if σ1, σ2 → 0 and N → ∞. In practice, very
often we do not need to use very small σ1 and σ2 and very large N.
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Here,

Θ∆,µ (α1, l1;α2, l2)

= exp
[
iα1∆1,µ + iα2∆2,µ −

1
2

(
α2

1σ
2
1,µ + 2α1α2σ1,µσ2,µρµ + α2

2σ
2
2,µ

)]
(22)

is a CF corresponding to the conditional Gaussian PDF (12).
To determine the unknown coefficients and functions, entering in

(21) and (22), we compare the expansions of Θ (α1, l1;α2, l2) that
follow from the definition (20) and from the representation (21). The
expansion of (20) in powers of α1 and α2 has the form:

Θ (α1, l1;α2, l2) = 1 + iα1 〈∆1〉+ iα2 〈∆2〉

− 1
2

[
α2

1

〈
∆2

1

〉
+ 2α1α2 〈∆1∆2〉+ α2

2

〈
∆2

2

〉]
+ · · · .

(23)
Because 〈ζ〉 = 0 , we obtain 〈∆1〉 = 〈∆2〉 = 0 and

Θ (α1, l1;α2, l2) = 1− 1
2

[
α2

1

〈
∆2

1

〉
+ 2α1α2 〈∆1∆2〉+ α2

2

〈
∆2

2

〉]
+ · · · .

(24)
The expansion of (21) in powers of α1, α2 has the form

Θ∆ (α1, l1;α2, l2) ≈
∑
µ

Pµ

{
1 + iα1∆1,µ + iα2∆2,µ

−1
2

(
α2

1σ
2
1,µ + 2α1α2σ1,µσ2,µρµ + α2

2σ
2
2,µ

)
− 1

2

(
α2

1∆
2
1,µ + 2α1α2∆1,µ∆2,µ + α2

2∆
2
2,µ

)
+ · · ·

}
.

(25)
From comparison of the zero-order in α-s terms of expansions (24)
and (25) we obtain the same relation (19). From comparison of the
linear in α1 and α2 terms we obtain∑

µ

Pµ∆1,µ = 0,
∑
µ

Pµ∆2,µ = 0. (26)

From comparison of the coefficients in front of α2
1 , α2

2 , and α1α2 we
obtain: ∑

µ

Pµ

[
σ2

1,µ + ∆2
1,µ

]
=

〈
∆2

1

〉
, (27)
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∑
µ

Pµ

[
σ2

2,µ + ∆2
2,µ

]
=

〈
∆2

2

〉
, (28)

∑
µ

Pµ
[
σ1,µσ2,µρµ + ∆1,µ∆2,µ

]
= 〈∆1∆2〉 . (29)

Note that all of the values ∆1, ∆2, ∆1,µ, ∆2,µ, σ2
1,µ, σ2

2,µ , and ρµ
depend on l1 or l2 . If we substitute ∆1,µ, ∆2,µ, σ2

1,µ, σ2
2,µ , and ρµ

in (27) to (29) in terms of conditional mean values (13) to (17), we
obtain: ∑

µ

Pµ
〈
∆2

1 (l1)
∣∣µ〉

=
〈
∆2

1 (l1)
〉
, (30)

∑
µ

Pµ
〈
∆2

2 (l2)
∣∣µ〉

=
〈
∆2

2 (l2)
〉
, (31)

∑
µ

Pµ 〈∆1 (l1) ∆2 (l2)|µ〉 = 〈∆1 (l1) ∆2 (l2)〉 . (32)

We can satisfy all of the equations (30) to (32) if we set〈
∆2

1 (l1)
∣∣µ〉

= λµ
〈
∆2

1 (l1)
〉
, (33)〈

∆2
2 (l2)

∣∣µ〉
= λµ

〈
∆2

2 (l2)
〉
, (34)

〈∆1 (l1) ∆2 (l2)|µ〉 = λµ 〈∆1 (l1) ∆2 (l2)〉 . (35)

In other words, all of the conditional second moments of differences are
proportional to corresponding known unconditional second moments
with the same coefficient λµ . In this case, all of the equations (30)
to (32) formulated in terms of functions of l1, l2 reduce to a single
equation with respect to the numbers λµ :∑

µ

Pµλµ = 1. (36)

Note that in terms of the structure function of the surface,

D
(
r′ − r′′

)
=

〈[
ζ

(
r′

)
− ζ

(
r′′

)]2
〉
, (37)

the functions (33) and (34) take the form〈
∆2

1 (l1)
∣∣µ〉

= λµD (l1m1) , (38)〈
∆2

2 (l2)
∣∣µ〉

= λµD (l2m2) . (39)
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The expression

〈∆1 (l1) ∆2 (l2)〉 = 〈[ζ (r + l1m1)− ζ (r)] [ζ (r + l2m2)− ζ (r)]〉

can be transformed using the Yaglom identity [22]:

(A−B) (C −D) =
1
2

[
(A−D)2 + (B − C)2 − (A− C)2 − (B −D)2

]
(40)

as follows:

〈∆1 (l1) ∆2 (l2)〉 =
1
2

[D (l1m1) + D (l2m2)−D (l1m1 − l2m2)] . (41)

Thus, we can rewrite (35) in the form

〈∆1 (l1) ∆2 (l2)|µ〉 =
λµ
2

[D (l1m1) + D (l2m2)−D (l1m1 − l2m2)] .

(42)
Let us consider now the equations (26). The derivatives of ∆1,µ (l1)
and ∆2,µ with respect to l1 or l2 in the points l1 = 0 or l2 = 0
are equal to the conditional mean values of slopes. We will find a bit
later that these values must be nonzero. Because of this we cannot set
these functions ∆1,µ (l1) and ∆2,µ (l2) to be zero, despite that such a
choice is consistent with (26).

The typical value of the difference

∆1,µ = 〈ζ (r + l1m1)− ζ (r)|µ〉

is on the order of
√〈

∆2
1 (l1)

〉
. On the other hand, ∆1,µ as a function

of l1 must be an odd function, that is,

∆1,µ (−l1) = −∆1,µ (l1) . (43)

Because of this we can seek ∆1,µ and ∆2,µ in the form 4

∆1,µ (l1) = κ1,µ
l1
|l1|

√〈
∆2

1 (l1)
〉

= κ1,µl1

√〈
∆2

1 (l1)
〉

l21
,

∆2,µ (l2) = κ2,µ
l2
|l2|

√〈
∆2

2 (l2)
〉

= κ2,µl2

√〈
∆2

2 (l2)
〉

l22
.

(44)

4 We assumed the coefficients κ1,µ and κ2,µ to be different because of
the different type of symmetry of slopes in the upwind and cross-wind
directions.
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Note that if l1 → 0 , the function
〈
∆2

1 (l1)
〉

is proportional to l21 and√〈
∆2

1 (l1)
〉
/l21 ∼ Constant.

Thus, the function ∆1,µ (l1) is proportional to l1 for small l1 , i.e., it
has a continuous derivative in the point l1 = 0 .

After substituting (44) in the equations (26) they reduce to the
equations with respect to the numbers κ1,µ and κ2,µ :∑

µ

Pµκ1,µ = 0,
∑
µ

Pµκ2,µ = 0. (45)

We expressed all the functions

∆1,µ,∆2,µ,
〈
∆2

1 (l1)
∣∣µ〉

,
〈
∆2

2 (l2)
∣∣µ〉

, and 〈∆1 (l1) ∆2 (l2)|µ〉
in terms of the known structure function D (r′ − r′′) of the surface
and the unknown numbers λµ, κ1,µ , and κ2,µ . If we substitute the
formulae obtained in expressions (15) to (17), we obtain

σ2
1,µ =

〈
∆2

1

∣∣µ〉
− 〈∆1|µ〉2 =

(
λµ − κ2

1,µ

)
D (l1m1) , (46)

σ2
2,µ =

〈
∆2

2

∣∣µ〉
− 〈∆2|µ〉2 =

(
λµ − κ2

2,µ

)
D (l2m2) , (47)

σ1,µσ2,µρµ = 〈∆1∆2|µ〉 − 〈∆1|µ〉 〈∆2|µ〉

=
λµ
2

[D (l1m1) + D (l2m2)−D (l1m1 − l2m2)]

− κ1,µκ2,µl1l2

√
D (l1m1)D (l2m2)

l21l
2
2

.

(48)

For the joint CF of the differences in the elevation of the surface,
substituting (46) to (48) in (21) we obtain:

Θ∆ (α1, l1;α2, l2) = 〈exp {iα1∆1 (l1) + iα2∆2 (l2)}〉

≈
∑
µ

Pµ exp

{
i

[
α1κ1,µl1

√
D (m1l1)

l21
+ α2κ2,µl2

√
D (m2l2)

l2
2

]

− 1
2

(
λµ − κ2

1,µ

)
α2

1D (m1l1)−
1
2

(
λµ − κ2

2,µ

)
α2

2D (m2l2)

− α1α2

[
λµ
2

[D (l1m1) + D (l2m2)−D (l1m1 − l2m2)]

− κ1,µκ2,µl1l2

√
D (l1m1)D (l2m2)

l21l
2
2

]}
.

(49)
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Formula (49) does not contain any unknown functions, but only un-
known numerical parameters Pµ, λµ, κ1,µ , and κ2,µ . To find these
parameters, we consider the particular case of (49) while l1, l2 → 0 .
In this case we obtain from CF for differences in elevation the CF for
derivatives of the surface, i.e., for the slopes of the surface.

4. MATCHING WITH THE PDF FOR SLOPES

The slope of a surface in a point r taken in a direction determined by
the unit vector n is given by the formula

γ (n, r) ≡ n∇ζ (r) . (50)

We assume that the spectrum of surface Φ (q) is symmetrical with
respect to the wind direction determined by the unit vector m1 . If we
choose the x-axis along the vector m1, we obtain

m1 = (1, 0) . (51)

The vector q can be presented in the form

q = (q cosϕ, q sinϕ) , (52)

where ϕ is the angle between q and the wind direction. The symme-
try of the spectrum with respect to the wind direction means that

Φ (q, ϕ) = Φ (q,−ϕ) . (53)

The structure function of the surface,

D
(
r′ − r′′

)
≡

〈[
ζ

(
r′

)
− ζ

(
r′′

)]2
〉
, (54)

in terms of the spectrum Φ , has the form (compare with (2)):

D (r, ψ) = 2
∫∫

[1− cos (qr)] Φ (q, ϕ) qdqdϕ. (55)

Let us consider in (49) the case l1, l2 → 0 and substitute

∆1 = ζ (r + l1m1)− ζ (r)→ l1m1∇ζ (r) = l1γ1 (r)
∆2 = ζ (r + l2m2)− ζ (r)→ l2m2∇ζ (r) = l2γ2 (r) .

(56)
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Here,
γ1 (r) ≡m1∇ζ (r) , γ2 (r) ≡m2∇ζ (r) (57)

are the slopes of the surface at the point r , taken in the upwind
direction m1 and in the cross-wind direction m2 . We obtain:

Θ∆ (α1, l1;α2, l2)→ 〈exp {i (α1l1) γ1 (r) + i (α2l2) γ2 (r)}〉
≡ Θγ (α1l1, α2l2) .

(58)

If we denote
β1 = α1l1, β2 = α2l2, (59)

and consider the case l1, l2 → 0, β1, β2 = Constant, we obtain the
relation between Θ∆ and Θγ :

Θγ (β1, β2) = lim
l1,l2→0

Θ∆

(
β1

l1
, l1;

β2

l2
, l2

)
. (60)

According to the definitions of slopes,

lim
l1→0

D (l1m1)
l21

=
〈
γ2

1

〉
, lim

l2→0

D (l2m2)
l22

=
〈
γ2

2

〉
. (61)

Therefore, the following limiting formulae are true for the values en-
tering in (49):

β1

l1
κ1,µl1

√
D (l1m1)

l21
→ β1κ1,µ

√〈
γ2

1

〉
,

β2

l2
κ2,µl2

√
D (l2m2)

l2
2

→ β2κ2,µ

√〈
γ2

2

〉
.

(62)

The term

D (l1m1) + D (l2m2)−D (m1l1 −m2l2) = 2 〈∆1 (l1) ∆2 (l2)〉 ,

following the product α1α2 in (49), needs more attention. Using spec-
tral representation (55), we find

〈∆1∆2〉 =∫∫
Φ (q) d2q {1− cos (qm1l1)− cos (qm2l2) + cos (qm1l1 − qm2l2)}

(63)
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But
{· · ·} = 4 sin

qm1l1
2

sin
qm2l2

2
cos

qm1l1 − qm2l2
2

,

and

〈∆1∆2〉 = 4
∫∫

Φ (q) sin
qm1l1

2
sin

qm2l2
2

cos
qm1l1 − qm2l2

2
d2q.

(64)
For l1 , l2 → 0 we obtain

4 sin
qm1l1

2
sin

qm2l2
2

cos
qm1l1 − qm2l2

2
→ l1l2 (qm1) (qm2)

and

lim
l1,l2→0

〈∆1∆2〉
l1l2

= 〈γ1γ2〉

=
∫∫

Φ (q) (qm1) (qm2) d
2q

=
∫ ∞

0
q3dq

∫ π

−π
Φ (q, ϕ) sinϕ cosϕdϕ = 0

because of Φ (q, ϕ) = Φ (q,−ϕ) (the integrand is an odd function with
respect to ϕ ). Thus, we proved that the term

〈∆1∆2〉
l1l2

→ 0 while l1, l2 → 0,

or
lim

l1,l2→0

D (l1m1) + D (l2m2)−D (m1l1 −m2l2)
l1l2

= 0, (65)

vanishes while l1 , l2 → 0 . This relation also can be written in the
form

〈γ1γ2〉 = 0. (66)

It follows from (66) that two principal slopes in the same point on a
surface are uncorrelated. (It is shown in Appendix A, Part II that this
relation follows only from the symmetry of the spectrum with respect to
wind direction and is independent of the PDF of slopes; therefore, the
relation (66) can be derived without using any approximate formulae
for the PDF).
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Thus, using (60), (61), (62), and (65), we obtain from (49):

Θγ (β1, β2) = 〈exp {iβ1γ1 (r) + iβ2γ2 (r)}〉

≈
∑
µ

Pµ exp
{
iβ1κ1,µ

√〈
γ2

1

〉
+ iβ2κ2,µ

√〈
γ2

2

〉

− β2
1

2
(
λµ − κ2

1,µ

) 〈
γ2

1

〉
− β2

2

2
(
λµ − κ2

2,µ

) 〈
γ2

2

〉
+β1β2κ1,µκ2,µ

√〈
γ2

1

〉 〈
γ2

2

〉}
.

(67)

It is easy to verify by direct differentiation of the right-hand side of
(67) that

− ∂2Θγ (β1, β2)
∂β1∂β2

∣∣∣∣
β1=β2=0

= 〈γ1γ2〉 = 0 (68)

for any values of the parameters. The mean value of the slope 〈γ1〉 ,

〈γ1〉 =
1
i

∂Θγ (β1, β2)
∂β1

∣∣∣∣
β1=β2=0

=
√〈

γ2
1

〉 ∑
µ

Pµκ1,µ = 0 (69)

because of (45). A similar formula is true for γ2 . Thus, the principal
slopes γ1 and γ2 are statistically dependent, but uncorrelated.5

It follows from (67) that the conditional Gaussian distribution, mar-
ked by subscript µ , has the following parameters:

〈γ1|µ〉 = κ1,µ

√〈
γ2

1

〉
, 〈γ2|µ〉 = κ2,µ

√〈
γ2

2

〉
σ2
γ1,µ =

(
λµ − κ2

1,µ

) 〈
γ2

1

〉
, σ2

γ2,µ =
(
λµ − κ2

2,µ

) 〈
γ2

2

〉
,

σγ1,µσγ2,µρµ = −κ1,µκ2,µ

√〈
γ2

1

〉 〈
γ2

2

〉
ρµ = − κ1,µκ2,µ√(

λµ − κ2
1,µ

) (
λµ − κ2

2,µ

) ,

1− ρ2
µ =

λµ
(
λµ − κ2

1,µ − κ2
2,µ

)
(
λµ − κ2

1,µ

) (
λµ − κ2

2,µ

)

(70)

5 This is an interesting example of statistically dependent, but uncor-
related, random values. Only in the case of the Gaussian PDF are two
random variables statistically independent if they are uncorrelated.
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σ2
1,µσ

2
2,µ

(
1− ρ2

µ

)
=

〈
γ2

1

〉 〈
γ2

2

〉
λµ

(
λµ − κ2

1,µ − κ2
2,µ

)
.

The PDF that corresponds to CF (67) is given by the formula

Wγ (γ1, γ2) =
∑
µ

Pµ

2π
√
λµ

(
λµ − κ2

1,µ − κ2
2,µ

) 〈
γ2

1

〉 〈
γ2

2

〉

× exp


−

(
λµ − κ2

2,µ

) [
γ1 − κ1,µ

√〈
γ2

1

〉]2

2
〈
γ2

1

〉
λµ

(
λµ − κ2

1,µ − κ2
2,µ

)

−
(
λµ − κ2

1,µ

) [
γ2 − κ2,µ

√〈
γ2

2

〉]2

2
〈
γ2

2

〉
λµ

(
λµ − κ2

1,µ − κ2
2,µ

)

−
κ1,µκ2,µ

[
γ1 − κ1,µ

√〈
γ2

1

〉] [
γ2 − κ2,µ

√〈
γ2

2

〉]
√〈

γ2
1

〉 〈
γ2

2

〉
λµ

(
λµ − κ2

1,µ − κ2
2,µ

)

 .

(71)
Because the values σ2

1,µ, σ2
2,µ , and 1 − ρ2

µ must be non-negative, we
obtain the following restrictions for the parameters λµ, κ1,µ , and κ2,µ :

λµ − κ2
α,µ ≥ 0, α = 1, 2; λµ − κ2

1,µ − κ2
2,µ ≥ 0. (72)

5. FINDING THE PARAMETERS λµ, κµ , AND Pµ

The next step is to find parameters λµ, κµ , and Pµ . If the function
Wγ (γ1, γ2) is known (for example, from the experimental data), we can
approximate this function by the formula (71). (See footnote3 after the
formula (17)). It follows from the statistical symmetry of slopes with
respect to wind direction that distribution in the cross-wind direction
must be symmetrical, i.e.,

Wγ (γ1, γ2) = Wγ (γ1,−γ2) . (73)

The top of each conditional Gaussian PDF numbered by the subscript
µ has on the plane (γ1, γ2) the coordinates(

κ1,µ

√〈
γ2

1

〉
, κ2,µ

√〈
γ2

2

〉)
. (74)
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It follows from the formula (71) and the symmetry condition (73) that
each point numbered by µ and having coordinates (74), must be ac-
companied by the dissymmetric point, numbered by some µ′ , and
having the coordinates

κ1,µ′

√〈
γ2

1

〉
= κ1,µ

√〈
γ2

1

〉
, κ2,µ′

√〈
γ2

2

〉
= −κ2,µ

√〈
γ2

2

〉
, (75)

and the same values of Pµ′ = Pµ and λµ′ = λµ . It is convenient to
numerate this point by µ′ = −µ . In this case,6

κ1,−µ = κ1,µ; κ2,−µ = −κ2,µ; Pµ = P−µ, λµ = λ−µ. (76)

Therefore, we must approximate the experimental joint PDF of two
principal slopes by the formula (71) with the additional conditions

∑
µ

Pµ = 1, Pµ > 0,
∑
µ

Pµκ1,µ =
∑
µ

Pµκ2,µ = 0,
∑
µ

Pµλµ = 1

P−µ = Pµ, λ−µ = λµ, κ1,−µ = κ1,µ;

κ2,−µ = −κ2,µ, λµ ≥ κ2
1,µ + κ2

2,µ.
(77)

The quantities
〈
γ2

1

〉
and

〈
γ2

2

〉
can be determined from the joint exper-

imental PDF Wγ (γ1, γ2) . Therefore, only the numbers κ1,µ, κ2,µ, λµ ,
and Pµ need to be found. Note that, in general, the conditional 2-D
Gaussian PDF is characterized by five independent parameters: two
shifts and three coefficients of the quadratic form. In our case, only
three independent parameters κ1,µ, κ2,µ, λµ remain; the two other
coefficients of the quadratic form are some functions of κ1,µ, κ2,µ, λµ .

The procedure of approximation can be performed by minimization
of the integrated squared difference between the given joint PDF and
its approximation by the formula (71). In the process of approximation
we find all the numerical parameters Pµ, κ1,µ, κ2,µ , and λµ (see the
example in the section “Numerical Results for the Radar Cross Section
for Cox-Munk PDF and 2-D Anisotropic Spectra” in Part II). 7

6 The index of summation runs from −N ′ to N ′ instead of 1, N.
7 We must emphasize that, as with other methods of finding PDF
approximations by using a finite number of moments, the procedure
for approximating PDF by the sum of Gaussian components is unsta-
ble. If we approximate some experimental PDF W (γ) , we always can
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6. THE CF FOR THE ARBITRARILT DIRECTED
DIFFERENCE ζ (r′)− ζ (r′′)

We have already obtained the formula (49) for the joint CF of two
differences, taken in the two perpendicular principal directions. In this
section we generalize this formula for the arbitrarily directed difference
of the type

∆
(
r′, r′′

)
= ζ

(
r′

)
− ζ

(
r′′

)
. (78)

It is easy to formulate the problem of finding the CF for such differences
in terms of the solved problem. Let us draw through the point r′ a
straight line in the direction of the vector m1 (the upwind direction)
and draw through the point r′′ a straight line in the direction of the
vector m2 (the cross-wind direction). These two lines intersect at
some point r∗ , depending on r′ and r′′ . This point is determined by
the equations

r′ =
(
x′, y′

)
, r′′ =

(
x′′, y′′

)
, r∗ =

(
x′′, y′

)
l1 = l1

(
r′, r′′

)
= m1

(
r′′ − r′

)
= x′′ − x′,

l2 = l2
(
r′, r′′

)
= m2

(
r′′ − r′

)
= y′′ − y′.

(79)

We can present the difference ζ (r′)− ζ (r′′) as follows:

ζ
(
r′

)
− ζ

(
r′′

)
= ∆

(
r′, r′′

)
=

[
ζ

(
r′

)
− ζ (r∗)

]
−

[
ζ

(
r′′

)
− ζ (r∗)

]
= ∆1 (l1)−∆2 (l2) .

(80)

Thus, for the CF of ∆ (r′, r′′) we obtain

Θ∆ (α) =
〈
exp

{
iα∆

(
r′, r′′

)}〉
= 〈exp {iα∆1 (l1)− iα∆2 (l2)}〉
= Θ∆ (α, l1;−α, l2) ,

(81)

add some additional Gaussian component with a very small coefficient,
centered far beyond the experimental range. such an additional term
will not affect the accuracy of approximation in the considered range
but can significantly change the highest moments. Because of this, in
the process of approximation we must restrict ourselves to a level of ac-
curacy that is consistent with the accuracy of measured the measured
PDF.
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where Θ∆ (α, l1;−α, l2) is given by the formula (49). Substitution of
(49) in (81) leads to the formula

Θ∆ (α) =
〈
exp

{
iα

[
ζ

(
r′

)
− ζ

(
r′′

)]}〉
≈ exp

{
iαL − α2Q

}
, (82)

where

L = κ1,µl1

√
D (m1l1)

l21
− κ2,µl2

√
D (m2l2)

l22
(83)

and

Q =
1
2

(
λµ − κ2

1,µ

)
D (m1l1) +

1
2

(
λµ − κ2

2,µ

)
D (m2l2)

−
[
λµ
2

[
D (m1l1) + D (m2l2) + D (m1l1 −m2l2)

]

+ κ1,µκ2,µl1l2

√
D (m1l1)D (m2l2)

l21l
2
2

]
.

(84)

After cancellation of several terms following the factor α2λµ, we obtain

Θ∆ (α) =
〈
exp

{
iα

[
ζ

(
r′

)
− ζ

(
r′′

)]}〉
≈

∑
µ

Pµ exp

{
iαL − 1

2
α2λµD (m1l1 −m2l2) +

α2L2

2

}
.

(85)
It is easy to show that the vector

m1l1 −m2l2 =
(
r∗ − r′

)
+

(
r∗ − r′′

)
=

(
x′′ − x′, y′ − y′′

)
is dissymmetric to the vector r′′−r′ with respect to the direction of m1

(i.e., to the wind direction). Because we assumed the symmetry of the
spectrum (and the structure function) with respect to wind direction,
we obtain from this symmetry:

D
(
m1l1

(
r′, r′′

)
−m2l2

(
r′, r′′

))
= D

(
r′′ − r′

)
. (86)

Thus, we can simplify formula (85) and write

Θ∆ (α) =
〈
exp

{
iα

[
ζ

(
r′

)
− ζ

(
r′′

)]}〉
≈

∑
µ

Pµ exp
{
iαL−1

2
α2

[
λµD

(
r′′ − r′

)
− L2

]}
.

(87)
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It follows from (87) that the coefficient following the factor α in the
exponent presents the conditional mean value of ζ (r′)− ζ (r′′) :

〈[
ζ

(
r′

)
− ζ

(
r′′

)]∣∣µ〉
= L = κ1,µl1

√
D (m1l1)

l21
− κ2,µl2

√
D (m2l2)

l22
,

(88)
and the coefficient following the factor α2/2 presents the conditional
variance of the same difference:〈[

ζ
(
r′

)
−ζ

(
r′′

)]2
∣∣∣µ〉
−

〈[
ζ

(
r′

)
−ζ

(
r′′

)]∣∣µ〉2 =λµD
(
r′′−r′

)
−L2 ≥ 0.

(89)
From comparison of (89) and (88) it follows that〈[

ζ
(
r′

)
− ζ

(
r′′

)]2
∣∣∣µ〉

= λµD
(
r′′ − r′

)
. (90)

This result extends (38), (39) to an arbitrarily directed argument of
the conditional structure function.

6.1 The CF for an Arbitrarily Directed Slope

Let us set in (87)

r′ = r+
ρ

2
, r′′ = r− ρ

2
, (91)

and consider the case |ρ| → 0. For the difference ζ (r′) − ζ (r′′) we
obtain:

ζ
(
r′

)
− ζ

(
r′′

)
≈ ρ∇ζ (r) + · · · = ργ (r) + · · · . (92)

Because in the chosen coordinate system we have

ρ = (l1, l2) and γ = (γ1, γ2) ,

we can also write

ζ
(
r′

)
− ζ

(
r′′

)
= l1γ1 + l2γ2 + · · · . (93)

For the values entering in (87) for l1 → 0, l2 → 0 we obtain

D (m1l1 (r′, r′′))
l21 (r′, r′′)

→
〈
γ2

1

〉
,

D (m2l2 (r′, r′′))
l22 (r′, r′′)

→
〈
γ2

2

〉
(94)
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and (because 〈γ1γ2〉 = 0 ),

D
(
r′′ − r′

)
→

〈
[l1γ1 + l2γ2]

2
〉

= l21
〈
γ2

1

〉
+ l22

〈
γ2

2

〉
. (95)

Thus, for l1 → 0, l2 → 0 we can write denoting

A (α, β) ≡ ακ1,µ

√〈
γ2

1

〉
− βκ2,µ

√〈
γ2

2

〉
, (96)

〈exp [iα (l1γ1 + l2γ2)]〉 = Θγ (αρ)

≈
∑
µ

Pµexp

{
iαA (l1, l2)−

1
2
α2

{
λµ

[
l21

〈
γ2

1

〉
+l22

〈
γ2

2

〉]
−A2 (l1, l2)

}}
.

(97)
The function Θγ (αρ) really depends on the product αρ = β =
(αl1, αl2) :

〈exp [iβγ (r)]〉 ≡ Θγ (β)

≈
∑
µ

Pµ exp

{
iA (β1, β2)−

1
2

{
λµ

[
β2

1

〈
γ2

1

〉
+ β2

2

〈
γ2

2

〉]
−A2(β1, β2)

}}
.

(98)
We can present (98) in another form, if we set

β1 = β cosψ, β2 = β sinψ, (99)

where ψ is the angle with respect to wind direction. In this case,

γ1 cosψ + γ2 sinψ ≡ γ (ψ) (100)

is the slope in ψ-direction and

β2
1

〈
γ2

1

〉
+ β2

2

〈
γ2

2

〉
= β2

[
cos2 ψ

〈
γ2

1

〉
+ sin2 ψ

〈
γ2

2

〉]
= β2

〈
γ2 (ψ)

〉
.

(101)
The last equality is true because 〈γ1γ2〉 = 0 . We emphasize that
formula (101) describes the dependence of the rms of slope on the
direction. This dependence is universal; it follows only from the sym-
metry of the spectrum with respect to wind direction and does not
depend on the PDF. (See Appendix A, Part II for a derivation of (101)
that is based only on the symmetry of the spectrum).
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The scalar product βγ (r) takes the form

βγ (r) = β1γ1 + β2γ2 = β [γ1 cosψ + γ2 sinψ] = βγ (ψ) . (102)

Substituting (99) to (102) in (98), we obtain:

〈exp [iβγ (ψ)]〉 ≡ Θγ(ψ) (β)

≈
∑
µ

Pµ exp

{
iβA (ψ)−β2

2
{
λµ

〈
γ2 (ψ)

〉
−A2 (ψ)

} }
,

(103)
where

A (ψ) ≡ A (cosψ, sinψ) = κ1,µ

√〈
γ2

1

〉
cosψ − κ2,µ

√〈
γ2

2

〉
(104)

7. MULTIVARIATE PDF FOR DIFFERENCES ζ (r′)−ζ (r′′)

For many problems it is necessary to know the joint CF for several
differences of the type

∆1

(
r′1, r

′′
1

)
= ζ

(
r′1

)
− ζ

(
r′′1

)
, ...,∆n

(
r′n, r

′′
n

)
= ζ

(
r′n

)
− ζ

(
r′′n

)
. (105)

For example, such CFs appear in the theory of wave scattering from
rough surfaces; they contain all the information necessary to calculate
the scattering cross sections.

We seek this CF,

Θ∆ (α1, ..., αn) ≡
〈
exp

{
i
∑

αi∆i

(
r′i, r

′′
i

)}〉
, (106)

in the form

Θ∆ (α1, ..., αn) ≈
∑
µ

Pµ exp

{
i

n∑
i=1

αi
〈
∆i

(
r′i, r

′′
i

)∣∣µ〉

−1
2

n∑
i,k=1

Bik
(
r′i, r

′′
i ; r
′
k, r
′′
k|µ

)
αiαk


 ,

(107)

with the same values Pµ, κ1,µ, κ2,µ , and λµ that have already been
determined. Here,

Bik
(
r′i, r

′′
i ; r
′
k, r
′′
k|µ

)
=

〈
∆i

(
r′i, r

′′
i

)
∆k

(
r′k, r

′′
k

)∣∣µ〉
−

〈
∆i

(
r′i, r

′′
i

)∣∣µ〉 〈
∆k

(
r′k, r

′′
k

)∣∣µ〉
.

(108)
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Using the Yaglom identity (40), we obtain:

〈
∆i

(
r′i, r

′′
i

)
∆j

(
r′j , r

′′
j

)∣∣µ〉
≡

〈[
ζ

(
r′i

)
− ζ

(
r′′i

) ][
ζ

(
r′j

)
− ζ

(
r′′j

) ]∣∣∣µ〉
=

1
2

{ 〈[
ζ

(
r′i

)
− ζ

(
r′′j

)]2
∣∣∣µ〉

+
〈[

ζ
(
r′j

)
− ζ

(
r′′i

)]2
∣∣∣µ〉

−
〈[

ζ
(
r′i

)
− ζ

(
r′j

)]2
∣∣∣µ〉
−

〈
[ζ

(
r′′i

)
− ζ

(
r′′j

)
]2

∣∣∣µ〉 }
.

(109)

But for the arbitrarily directed, conditional, mean value and structure
function we have already obtained formulae (88) and (90):

〈[
ζ

(
r′

)
− ζ

(
r′′

)]∣∣µ〉
=

〈
∆

(
r′, r′′

)∣∣µ〉
= L

(
∇′, r′′

)
, (110)〈[

ζ
(
r′

)
− ζ

(
r′′

)]2
∣∣∣µ〉

= λµD
(
r′′ − r′

)
, (111)

where, according to (79),

l1 =
(
r′′ − r′

)
m1 = x′′ − x′, l2 =

(
r′′ − r′

)
m2 = y′′ − y′. (112)

(i.e., the arguments of the anisotropic structure functions in (110) are
the upwind and the cross-wind components of the vector r′′ − r′ ).

Substituting (111) in (109), we obtain

〈
∆i

(
r′i, r

′′
i

)
∆j

(
r′j , r

′′
j

)∣∣µ〉
≡ λµ

2

{
D

(
r′i − r′′j

)
+ D

(
r′j − r′′i

)
−D

(
r′i − r′j

)
−D

(
r′′i − r′′i

) }
,

(113)
and the formula (108) for Bij

(
r′i, r

′′
i ; r
′
j , r
′′
j |µ

)
takes the form

Bij
(
r′i, r

′′
i ; r
′
j , r
′′
j |µ

)
=

λµ
2

[
D

(
r′i − r′′j

)
+ D

(
r′j − r′′i

)
−D

(
r′i − r′j

)
−D

(
r′′i − r′′i

)]
− L

(
r′i, r

′′
i

)
L

(
r′j , r

′′
j

)
.

(114)
Formula (107), where 〈∆i (r′i, r

′′
i )|µ〉 is determined by (110), Bij is

determined by (114), and l1

(
r′j , r

′′
j

)
, l2

(
r′j , r

′′
j

)
are determined by
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(112), presents the joint multivariate CF for several arbitrarily directed
differences in elevation.

8. CONCLUSIONS. COMPARISON WITH OTHER
METHODS OF STATISTICAL DESCRIPTION OF SEA
SURFACES

There are several different approaches to the problem of the statistical
description of sea surfaces. All of these approaches are based on the
general theory of random functions (see, e.g., [1, 22–24]. The paper of
[9], devoted to random surfaces, served as a starting point for works
describing the statistics of nonlinear surface waves. [9] is based on a
special model of the rough surface. This model is equivalent to the
following representation of a random 2-D field:

ζ (r) =
∫∫

ξ (q) exp (iqr) d2q. (115)

Here, the random spectral density ξ (q) is determined by the following
relations:

ξ (q) is Gaussian random function
〈ξ (q)〉 = 0〈
ξ
(
q′

)
ξ∗

(
q′′

)〉
= E

(
q′

)
δ
(
q′ − q′′

)
〈
ξ
(
q′

)
ξ
(
q′′

)〉
=

〈
ξ∗

(
q′

)
ξ∗

(
q′′

)〉
= 0.

(116)

Representation (116) is widely used in the theory of turbulence [25]
and wave propagation in random media [1, 24].8 Thus, the random
surfaces considered in [9] are Gaussian.

In a subsequent paper of [26], the model of random functions de-
veloped in [9], was applied to nonlinear surface gravity waves. In this
case, the surface is non-Gaussian and the following decomposition (in
terms of (116)) was used:

8 In paper [9] the more cumbersome representation that includes the
finite sum ζ (r) = Re

∑N
n=1 cn exp (iknr) with the random coefficients

cn and the following limiting process N → ∞ , was used. But all
of the results of this approach are obtainable from a more compact
representation (116).
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ζ (r) =
∫∫

ξ (q) exp (iqr) d2q

+
∫∫

d2q1

∫∫
d2q2 exp [i (q1 + q2) r]C2 (q1,q2) ξ (q1) ξ (q2)

+
∫∫

d2q1

∫∫
d2q2

∫∫
d2q3 exp [i (q1 + q2 + q3) r]

× C3 (q1,q2,q3) ξ (q1) ξ (q2) ξ (q3) + · · · .
(117)

The coefficients Ck (q1, ...,qk) were determined by the substitution of
(117) in the hydrodynamic equations, expanded in the perturbation
series in powers of ζ . As a result, the expansion of the non-Gaussian
PDF in the Gram-Charlier series was obtained. This method describes
only small deviations from the Gaussian distribution, because it uses
the perturbation expansion. The random Gaussian field ξ (q) , enter-
ing in (117), is completely auxiliary and has no direct meaning.

The model of [26] was used in [27] for description of radar impulses
reflection from the sea surface in GO approximation. This model was
extended in [28] for the joint PDF of elevation and two slopes, and
applied to radar altimetry.

In [29] the method of [9] was generalized for random Stokes waves.
This work also starts from the auxiliary Gaussian field, but the field
undergoes some nonlinear transforming, induced by the shape of the
Stokes wave. As a result, an explicit formula for the PDF of elevations
was obtained. In paper [30] the same method was applied to the joint
PDF of elevation and slope for the random Stokes waves. This was
possible because of the dynamic relationship between the elevation
and slope for the Stokes waves. In [31] the restrictions related to the
appearance of breaking waves were included in the consideration.9

9 The assumption that the first-order solution is Gaussian, used in
[26] and in the many subsequent papers, is an additional assumption.
It is rather difficult to ground this assumption, because in the presence
of nonlinear effects, the first-order component by itself has no physical
meaning. It is applied to a nonexistent physical object. If the waves
are really linear (amplitudes are very small), the Gaussian PDF seems
to be natural, but this fact has no relation to the first-order compo-
nent of the nonlinear waves. Thus, this assumption can be considered
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The main goal of the present paper is to develop a model of the
sea surface that will allow us to calculate the CF of the surface of
an arbitrary order, and at the same time satisfy necessary conditions
for the second-order PDF of slopes and for the spectrum. Such CFs
appear in the modern theories of rough surface scattering (see section
2 of this paper). The above-mentioned sea-surface models do not allow
us to achieve this goal. For instance, the approach of papers [26] and
[28] leads to the truncated Gram-Charlier series that necessarily entail
negative probabilities. The method of papers [29, 30] and [31] is free
from this disadvantage, but it does not allow us to find the high-order
CFs, nor does the method of [26] and [28]. For instance, none of the
above-mentioned methods allows us to calculate the scattering cross
sections even in the Kirchhoff approximation; only the simplest GO
approximation can be considered. The method developed in this paper
allows us to calculate a scattering cross section in any scattering theory
(see section 2).

Another difference in the method presented in this paper is its phe-
nomenological nature. We did not try to utilize dynamical equations
of motion, but used the experimental data instead. However, we could
have used not only experimental data, but also any results of theoret-
ical consideration.

Usage of the decomposition of the multivariate non-Gaussian PDF
in the sum of a Gaussian PDF allows us to describe such a non-
Gaussian PDF without the difficulties related to the truncation of the
Gram-Charlier series. This method can be applied to various problems
dealing with non-Gaussian distributions.

We should emphasize that the model of the random surface devel-
oped is not ergodic. This means that it is impossible to create a single
surface large enough that the averaging over this single surface leads
to the same mean values as statistical averaging. Each realization of
the surface has the (conditional) Gaussian PDF. If we want to use this
mathematical model for some numerical method of calculation of the
scattering field, and apply the Monte Carlo simulation method (in-
stead of analytical averaging) we must first prepare the set of models
of Gaussian random surfaces. Each of these surfaces must have its
specific values of λµ, κµ,1, and κµ,2 , and the total number of sur-

as a convenient and effective working hypothesis, but only successful
comparison with the experimental data can serve as a justification for
its use.
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faces having these parameters and included in the ensemble must be
proportional to Pµ .10
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