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1. INTRODUCTION

Surface integral equations (SIEs) have been widely adopted as effi-
cient tools to handle electromagnetic scattering problems. However,
the uniqueness of the solution of these equations is questioned. The
electric field integral equation (EFIE) and the magnetic field integral
equation (MFIE) are two classes of these SIEs. They yield unique
solutions for all the frequency spectrum except at a discrete set of fre-
quencies. This set is related to the interior cavity problem covered
by a perfectly conducting surface. At these frequencies, the homoge-
neous equation yields nontrivial spurious solutions which contaminate
the physical solution causing the boundary conditions to be no longer
satisfied. Due to the discretization errors encountered in the modeling,
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the SIE fails at and in the vicinity of these frequencies.

The diagnosis of the nonuniqueness problem for objects immersed
in free space has been located and identified. Several remedies for such
case have been suggested, as will be outlined shortly. However, as
far as we know, the nonuniqueness problem for an object in a layered
medium has not been yet discussed. This is the main object of this
article.

For a conducting object in free space, several SIEs and techniques
have been proposed to circumvent the shortcoming of the original in-
tegral equations. Mitzner [1] proposed a linear combination of the
EFIE and MFIE, which is widely known as the combined field integral
equation (CFIE). This method was discussed in detail by Mautz and
Harrington [2]. A variant of this method is given by Cunefare and
Koopmann [3] and is known as coupled Helmholtz integrals (CHI).
In CHI, all the field points are restricted to the interior region, thus
alleviating the singularity problem. The CFIE method is reliable and
yields a unique solution but at the expense of additional computational
overhead. Bolomey and Tabbara [4] set up another technique known as
the combined source integral equation (CSIE) which was extended later
by Mautz and Harrington [5]. In this approach, combined electric and
magnetic sources are placed on the surface of the conducting body, and
the tangential electric field boundary condition due to these sources is
enforced. This approach has the same degree of complexity and com-
putational effort as the CFIE. However, the computed current is not
the true one induced on the surface, and additional effort has to be ex-
erted to evaluate it. Yaghjian [6] augmented the EFIE and MFIE with
additional constraints in order to enforce the satisfaction of boundary
conditions. However, the augmented equations fail to yield the unique
solution for the sphere. Schenck [7] overspecified the original SIE sys-
tem with additional equations that force the interior-region field to
vanish. This formulation is known as the combined-Helmholtz integral
equation formulation (CHIEF). These additional equations should be
satisfied at interior points which do not coincide with nodal surfaces.
The resulting overdetermined system is then solved by a least-squares
procedure. Although it is argued that the resulting formulation yields a
unique solution if at least one point is not located on nodal surfaces [8],
this may cause a potential problem as the frequency increases. Water-
man [9] developed another approach known as the extended boundary
condition method (EBCM). This method was later extended by others
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[10, 11]. In this approach, the field points are restricted to the inte-
rior region. However, the stability and uniqueness of this approach
are questioned [11]. Mohsen [12] used the source simulation technique
as an alternative formulation to deal with two-dimensional problems.
Monzon and Damaskos [13] proposed an approach called the parasitic
body technique to suppress the internal resonances. It assumes the
presence of a lossy body inside the resonant geometry, where it inter-
acts only with the resonant fields and attenuates them. However, the
need to model such a parasitic body with an additional computational
overhead may limit the use of this method. Theoretically, the scattered
field of the EFIE is unique. Unfortunately, due to the ill-conditioning
of the matrix at and in the vicinity of the resonant frequencies the
system solution yields incorrect results. Sarkar and Rao [14] suggested
an iterative technique to find the minimum norm solution. Canning
[15, 16] used the singular value decomposition (SVD) to isolate and,
hence, damp the resonant contribution in the scattered field. Very re-
cently, Mohsen et al. [17] developed a new method called the correction
factor technique (CFT). Based on the SVD, the computed current is
amended by adding a correction factor term. Canning [18] developed
a similar and more general method to account for the surface currents
associated with the resonant interior modes.

Despite the immensity of the techniques used to remedy the nonuni-
queness problem, one has to resort to some indicator to test the validity
of the solution. This is very important, particularly in such cases where
no other validation data is available, which is the case of our problem.
We choose mainly two indicators: the condition number Cn [19] and
the minimum singular value (MSV) [15].

In this work, the nonuniqueness problem of the SIEs of a conducting
body in a layered medium is explored. As an application, we will be
concerned here with a conducting body of revolution (BOR) in a half-
space. Very recently Abdelmageed et al. [20] have developed an electric
field integral equation for conducting bodies of revolution (EFIE-BOR)
in layered media. Also, Mohsen and Abdelmageed [21] have developed
the magnetic field integral equation formulation for the same problem
(MFIE-BOR). The uniqueness of both the EFIE-BOR and MFIE-BOR
formulations are studied here. The CFIE, CHIEF and CFT techniques
are used to treat the nonuniqueness problem. The values of both Cn
and MSV are monitored to test the results.
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Figure 1. A body of revolution in layered medium.

The paper is organized as follows. In section 2, the uniqueness of the
solution of both the EFIE and MFIE of a conducting object in a layered
medium is stated. In section 3, the treatment of the nonuniqueness
problem is presented. Numerical results are given in section 4. Some
concluding remarks are included in section 5.

2. UNIQUENESS OF THE SOLUTION

The EFIE and MFIE formulations of a conducting BOR of surface S in
a layered medium (see Fig. 1) have been developed in [20] and [21]. The
solution of these integral equations is not unique if the corresponding
homogeneous equations have non-trivial solutions. Following the same
approach in [2] for the free space case, and in terms of the differential
equations governing the electric field E, this means that the solution
is not unique when there is a non-trivial solution to

V xV x E(r,K) =k*(r)E(r,K) within S (1)

nxEr, K)=0 onS (2)

where K and k are the surface current density and the wavenumber,
respectively. Also, the continuity of the fields at the interfaces should
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be satisfied. Equations similar to (1) and (2) hold for the magnetic
field H. The wavenumber k depends on 7 to denote its variation
from one layer to another. The layers are assumed to be homogeneous
and isotropic. These equations represent the resonant modes of a cavity
resonator covered by a perfect conductor S. The structure of the cavity
has the same media parameters as the surrounding media. Thus, if
the object is totally confined to one layer of wavenumber k, then the
resonant modes would be the same as those of an object immersed in
a space of wavenumber k. Also, like free space both E and H field
equations have the same set of modes. When the object is penetrating
the interface between two layers, the location of the resonant modes
is no longer an easy task. This is even so for a simple structure like
a sphere. The modes depend on the depth of penetration. Unlike the
free-space case, E and H field equations have different sets of modes.
All these arguments will be clarified below.

3. TREATMENT OF THE NONUNIQUENESS PROBLEM

A survey of many techniques proposed to tackle the nonuniqueness
problem has been presented in the introduction. We discuss here three
of these techniques: the CFIE, CHIEF and CFT methods. The CFIE
method uses a linear combination of both the EFIE and MFIE. Al-
though the CFIE method is complicated in nature, it is a very reliable
technique when used in free space. The CFIE is given in operator form
as

[H] + S [E] = {[Y] + 3[2]} 1] (3)

Min Tin

[Z] and [Y] are the equivalent matrices of the EFIE and MFIE formu-
lations, respectively. [El] and [H Z] are their corresponding excita-
tion vectors, and [I] is the unknown current vector to be determined.
The coupling factor « is a real positive number and it is usually se-
lected in the range 0 < a < 1 [2] for free space. When the body is
confined to one layer, 1, = \/pn/€, is the intrinsic impedance of this
layer. Otherwise, there is an ambiguity in determining its value. In
such a case, we set its value to the intrinsic impedance of free space. In
free space, « is chosen in such a way as to minimize the mean error.
This error is usually obtained by comparing the computed results with
the available exact solutions for some simple shapes like a sphere. The
usual selected value for free space is a = 0.2. However, Mautz and
Harrington [2] argued that the error is small for any value of a from
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(a) A buried sphere. (b) The corresponding cavity.

Figure 2. A conducting sphere present in a half-space and the corre-
sponding cavity.

0.2 to 1. In a layered medium, the situation is different as we do not
have an exact solution for any shape. Nevertheless, the optimum value
may be deduced by observing Cn or MSV as « changes.

For the CHIEF method, the equivalent N x N system of equations
of the original formulation, is augmented by additional M equations.
The field points of these equations are restricted to the interior region.
The resulting (N + M) x N overdetermined system is solved by a
least-squares procedure.

Based on SVD, the CFT method enforces the interior field to vanish
[17]. At resonant modes, a correction factor term is added to the
computed current K. Hence, the corrected current K. is expressed
as

K.= K+ AK, (4)

where A is an unknown complex factor to be determined. K, is the
normalized resonant mode current. Using the power method [16], it
is computed as the largest eigenvector of [[Z]H[Z]]_l ([[Y]H[Y]]_l),
where [Z]([Y]) is the impedance (admittance) matrix generated by
the moment method. The subscript H denotes taking the Hermitian
conjugate. A is computed by enforcing the interior electric (magnetic)
field E(H) to vanish, hence

FIK)+F =0 (5)

where F stands for either the scattered electric or magnetic fields.
Using (4), F(K.) may be expressed as
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F(K.) =F(K)+ AF(K,) (6)

Satisfying (5) and (6) at a selected interior point results in obtaining A
and hence K. This point should be away from any nodal surface. In
this approach, the authors in [17] considered only one resonance mode.
To take other modes into consideration, Canning [18] developed a more
general approach to compute the corrected current.

4. NUMERICAL RESULTS

The results of the CFIE, CHIEF and CFT methods for a BOR in a half-
space excited by an incident plane wave will be presented. Both the
CHIEF and CFT method are used to correct the EFIE. The following
three cases will be studied here:

e A conducting sphere above and below the interface.
e A conducting sphere penetrating the interface.
e A conducting pillbox penetrating the interface.

4.1 A Conducting Sphere above and below the Interface

A conducting sphere of radius a buried in a homogeneous medium
(11,€1) is illustrated in Fig. 2a. Its corresponding cavity resonator
enclosing the same medium (p1,€;) is shown in Fig. 2b. Tabulation
of the resonant frequencies for a spherical cavity enclosing free space is
given in [22, p. 270]. For the considered case here, these values should
be divided by ,/mi€r. On the other hand, for a sphere above the
interface the resonant frequencies are given by these tabulated values
divided by /p2és .

It is conceivable that the choice of « is important for the CFIE
technique to work well. To determine the best value, Cn and MSV
are monitored as « changes. At the optimal value, Cn attains its
minimum and MSV reaches its maximum.

In Figs. 3 and 4, MSV and Cn for the CFIE technique are shown
versus « for a sphere above and below the interface, respectively. The
results are computed for €; = 2,6,10 and 16, and e; = 1. In Fig. 3,
the sphere radius is ksa = 2.744 corresponding to the first resonant
frequency for a spherical cavity in a space of wavenumber ks, while
in Fig. 4, the sphere radius is kia = 2.744. In both figures, MSV
reaches its maximum at a = 0.5 ~ 0.6 and Cn attains its minimum
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Figure 3. MSV and Cn of CFIE as functions of « for a sphere above
the interface with the parameters: ey = 1.0, #° = 0.0°, keoa = 2.744
and d =02 .6 =2: — e =6:———, ¢ =10: — - —-,
€e1=16:.......

at a = 0.4. These values are figures of merit for the success of the
results. There is no contradiction here between these values, as the
solution is usually stable for some range of a. We have tried other
extensive results, and the same argument is still valid irrespective of
the resonant frequency or how far the object is from the interface.

To compare the performance of the CFIE and CFT techniques with
that of the EFIE and MFIE at the resonant frequencies, the current
distributions for two different cases are shown in Figs. 5-8. For these
cases the sphere radius is given by koa = 2.744 and kja = 2.744,
respectively. The current distribution is plotted versus the normalized
parameter s, which runs from s = 0(4,) to s = 1({f), where (/,)
and () are the starting and ending tips of the generating arc ¢. The
number of segments NS is set to 41 and the number of interior points
for the CHIEF technique is 7. In the first case, the sphere is in the
upper space with d = 0.2\, while in the other case it is in the lower
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Figure 4. MSV and Cn of CFIE as functions of a for a sphere below
the interface with the parameters: e = 1.0, ¢ = 0.0°, kia = 2.744

and d = —-08X,. e =2: — e =6:———, ¢ =10: —- —-,
€e1=16:.......
space with d = —0.4)\, where d is the distance from the interface to

the lower tip of the sphere. The +(—) sign means that the lower tip
is in the upper (lower) half-space. The dielectric constant of the lower
space is 10. For the CFIE technique, « is chosen equal to 0.6.

For the CHIEF technique, the interior points are chosen to lie on
a concentric sphere of radius a/2. For the CFT technique, the inte-
rior point is chosen at (r,0) = (a/2,0). The figures show that the
CFIE, CHIEF and CFT results are in good agreement. The results of
the EFIE and MFIE techniques are also included for comparison. To
test the performance of the different SIEs MSV, Cn and CPU time for
the two cases are shown in Tables 1-2. The CFT has a self-accuracy
test; so no test is required here. At resonant frequencies, Cn reaches
a high value; while MSV attains a low value. This is evident by ob-
serving the results of the EFIE and MFIE. The effect of the CFIE and
CHIEF on both Cn and MSV is quite clear. Both the Cn and MSV
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Figure 5. Magnitude of K, on a metallic sphere present in the upper
space with the parameters: €; = 10.0, €3 = 1.0, 6° = 0.0°, koa = 2.744
and d = 0.2)\,. EFIE: ...... , MFIE: — - —. CFIE: —— CFT: —.-.
CHIEF: — — —.

)

are significantly improved. This indicates that Cn and MSV can be
used as efficient indicators for both CFIE and CHIEF. A point which
deserves attention here is the range of Cn and MSV for EFIE and
MFIE at the resonant frequencies. Although the matrices of both for-
mulations become ill-conditioned at these frequencies, the range of Cn
and MSV is different. Cn (MSV) is much higher (lower) for the EFIE
than MFIE. This shows that the use of Cn and MSV as indicators is
formulation-dependent.

Observing the CPU time given in Tables 1-2, we notice that the time
is nearly doubled for the CFIE technique compared with the CHIEF
and CFT techniques. The CFT seems the most efficient method as it
requires less Memory Storage and less CPU time. It causes less than
8% increase in CPU time compared with 25% and more than 100% for
CHIEF and CFIE, respectively.



The uniqueness problem of the surface integral equations 287

K, [A/m]

w

Figure 6. Magnitude of K, on a metallic sphere present in the upper
space with the parameters: €; = 10.0, e = 1.0, 6* = 0.0°, koa = 2.744

and d =0.2)\,. EFIE: ...... , MFIE: — - —-, CFIE: ——, CFT: —---,
CHIEF: — — —.
SIE Cn MSV CPU Time in Sec.
EFIE 67357 0.00029 27
MFIE 4505 0.00077 35
CFIE 601 0.029 62
CHIEF 842 0.040 34
CFT 29

Table 1. Performance of SIEs for a sphere in the upper space with
koa =2.744, d =0.2),, 6 =0.0°, ¢ =10 and ea =1.
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Figure 7. Magnitude of K, on a metallic sphere present in the lower
space with the parameters: e; = 10.0, e = 1.0, 6* = 0.0°, kia = 2.744

and d = —0.4),. EFIE: ...... , MFIE: —.—. CFIE: —— CFT: —...|
CHIEF: — — —.
SIE Cn MSV CPU Time in Sec.
EFIE 39287 0.000077 28
MFIE 2332 0.00077 34
CFIE 328 0.028 52
CHIEF 902 0.00473 35
CFT 30

Table 2. Performance of SIEs for a sphere in the lower space with
kia =2.744, d = —0.4),, 0" =0.0°, ¢, =10 and e = 1.
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Figure 8. Magnitude of K, on a metallic sphere present in the lower
space with the parameters: ¢; = 10.0, e3 = 1.0, 6" = 0.0°, kja = 2.744
and d = —04)\,. EFIE: ...... , MFIE: —-—-, CFIE: —— CFT: —---|
CHIEF: — — —.

4.2 A Conducting Sphere Penetrating the Interface

For a penetrating sphere, there is no explicit formula to detect the
resonant frequencies. One way to detect these frequencies is the nu-
merical approach. Fig. 9 shows the MSV and Cn versus k,a of a
half-buried sphere for EFIE. ¢; = 10, e = 1 and 6" = 0.0°. Al-
though both the EFIE and MFIE yield the same resonant frequencies
when the sphere is embedded in one layer, the matter seems different
here. For a penetrating sphere, the EFIE and MFIE have different
frequencies. In Table 3, the first frequency of a half-buried metallic
sphere for m = 1 is shown for e¢; = 2,6,10 and 16. At these frequen-
cies one formulation succeeds and the other fails. The use of the CFIE
may seem inappropriate in this case as one can switch directly to the
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successful formulation. It is hard to determine this for any arbitrary

object without deliberate investigation. In this context, the CHIEF
and CFT may seem more appropriate.

MSV ———

Figure 9. MSV and Cn of EFIE versus koa for a half-buried metallic
sphere with the parameters: e¢; = 10.0, e2 = 1.0, §* = 0.0°.

Formulation Resonant frequencies given in terms of k,a
€1=2 €e1=206 e1 =10 €1 =16
EFIE 2.176 1.325 1.035 0.822
MFIE 2.283 1.534 1.217 0.973

Table 3. The first resonant frequency of a half-buried metallic sphere
for EFIE and MFIE with 6’ = 0.0°, eg = 1.
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The currents of a half-buried sphere of radius k,a = 1.035 are
shown in Figs. 10 and 11 for #* = 0.0°, ¢; = 10 and ey = 1. At these
values, the EFIE fails. As evident from the figures, the MFIE, CHIEF
and CFT agree well.

4.3 A Conducting Pillbox Penetrating the Interface

In Fig. 12a, the problem of a conducting pillbox penetrating the
interface is depicted. The corresponding cavity is shown in Fig. 12b.
The EFIE fails at the resonant frequencies of an electric cavity whose
structure is depicted in Fig. 12b. On the other hand, the MFIE fails at
the resonant frequencies of a magnetic cavity having the same structure
of Fig. 12b. The resonant frequencies of the electric and magnetic
cavities are given in the Appendix. They are given the notation TE,,;4
and TM,,,,,, for the transverse electric and transverse magnetic modes,
respectively. It is evident that the MFIE has a different set of modes
from that of EFIE. This is contrary to the free space case where both
the EFIE and MFIE have the same set of modes.

The first four EFIE resonant frequencies of m =1 for ¢; = 10, g =
1, L/a=2.0 and d/a = 0.5, 1.0 and 1.5 are given in Table 4. Using
the EFIE, the MSV and Cn versus koa for d/a =1.0 and d/a = 1.5
are illustrated in Figs. 13-14, respectively. As evident at the resonant
frequencies both MSV and Cn efficiently detect the failure of EFIE. The
currents for d/a = 1.0 at the first resonant frequency k,a = 0.9174
are shown in Figs. 15, 16. At this value the EFIE fails. Results of
the EFIE, MFIE, CHIEF techniques and CFT are presented. A good
agreement between the MFIE, CHIEF and CFT is achieved.

5. CONCLUSION

The uniqueness of the EFIE and MFIE for a conducting object in a
layered medium is presented. A case study of a BOR in a half-space is
studied. The CFIE, CHIEF and CFT are used to treat the failure of the
solution at resonant frequencies. It is shown that the EFIE and MFIE
fail at the same resonant frequencies when the object is confined to one
layer. For this case, the coupling factor « of the CFIE is found to yield
the best results in the range of o = 0.4 ~ 0.6. This was determined by
observing the minimum singular value MSV and condition number Cn.
On the other hand, when the object is penetrating the interface the
EFIE and MFIE fail at different sets of resonant frequencies. These
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Figure 10. Magnitude of K; on a half-buried metallic sphere with
the parameters: €; = 10.0, e3 = 1.0, #° = 0.0°, k,a = 1.035. EFIE:

.....  MFIE: —, CFT: —..., CHIEF: — — — .
Rfs for m =1 d/a=0.5 d/a=1.0 d/a=1.5
Rf order Rf order Rf order
1 1.3381 TE111 0.9147 TEq111 0.7904 TEq111
2 1.5337 | TMin 1.3046 | TMiqs 1.2578 | TE112
3 2.2543 TEq91 1.6698 TEq19 1.5546 TM111
4 2.4191 TM 21 1.8830 TE 91 1.7856 TE121

Table 4. Resonant frequencies (Rf) of EF IE, given in terms of koa,
of a pillbox penetrating the interface for 68* = 0.0°, ¢; = 10, 2 = 1
and L/a=2.0.
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frequencies are located analytically for a penetrating pillbox. However,
one can not distinguish between these frequencies for a general object
without a prior analysis. In this context, the CHIEF and CFT may
seem more appropriate than the CFIE. A comparison between the
CFIE, CHIEF and CFT have shown that CFT is the most efficient
technique. MSV and Cn have been used to test the validation of the
solution. They are found to be good indicators for the failure or success
of the formulation. However, the range of Cn and MSV is formulation-
dependent.

APPENDIX

In Fig. 17, a partially filled circular cylindrical cavity is shown. a and
L are, respectively, the radius and length of the cavity. For 0 < z < d,
it is filled with a dielectric of (u1,€1) while for d < z < L, it is filled
with a dielectric of (ug,e€2). For the electric cavity, the solution must
satisfy the condition of a zero tangential E at p = a, z = 0 and
z = L. For TM modes, a suitable solution is given by the magnetic
vector potential A = WTMq, where UTM is expressed as

W = Ad (X D) e coslhazl 0<z<d (D)
WM, = B (X)) e coslhn(L - 9 d<z<L (8

where

kila = (k1a>2 - Xr2rm (9)
kz2a =/ (k2a)* — X2, (10)

m=0,1,2,---, n=1,2,3,--- and X,,, is the nth zero of J,,(z) =
0. A tabulation of these zeros is given in [22, pp. 205]. The meaning
of the subscript ¢ = 1,2,3,--- will be clarified below. To determine
the constants A and B, we should satisfy the boundary conditions at
z = d. These conditions require the continuity of E,, E,, H, and
H, . Satisfying these conditions, one can deduce that

k., d k, L d
14 tan {kzla <—>] _ _fh=2a tan |:kz2a (— - —>] (11)
€1 a €9 a a
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Figure 11. Magnitude of K, on a half-buried metallic sphere with

the parameters: e; = 10.0, €3 = 1.0, #* = 0.0°, k,a = 1.035. EFIE:
..... , MFIE: ——, CFT: —---, CHIEF: — — —.

(a) (b)
Figure 12. A metallic pillbox penetrating the interface and the cor-

responding cavity: (a) A penetrating pillbox (b) The corresponding
cavity.
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Figure 13. MSV and Cn of EFIE versus K,a for a metallic pill-
box penetrating the interface with the parameters: e¢; = 10.0, €2 =

1.0, #® =0.0°,L/a=2.0 and d/a=1.0.

Solution of the transcendental equation (11) yields different values for
koa for a certain X,,,. The order of these values is given by the

subscript ¢ of the mode TM,,,, .
Similarly for TE modes, we can deduce that

ka1 cot [kzla <£l>] = —kﬂa cot [kzga <£ — é)]
M1 a M2 a a

k.1a = (kla)z - X7/nn2

where

kzga = (k?ga)Q — X{an

(12)

(13)

(14)

and X/, is the nth zero of J/ (z) = 0. A tabulation of these zeros
is given in [22, pp. 205]. Solution of the transcendental equation (12)
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Figure 14. MSV and Cn of EFIE versus k,a for a metallic pillbox pen-
etrating the interface with the parameters: e¢; = 10.0, e5 = 1.0, 6* =
0.0°,L/a=2.0 and d/a=1.5.

yields different values for k,a for a certain X, . . The order of these
values is given by the subscript ¢ of the mode TE;,,, .

For the magnetic cavity, the tangential magnetic field vanishes at
the cavity walls. Therefore, the solution must satisfy the condition of a
zero tangential H at p =a, z =0 and z = L. Hence, the magnetic
cavity problem is the dual of the electric cavity problem. The TM and
TE solutions are given by w?nﬁq and WIM ' respectively. Satisfying

mngq

the boundary conditions for TM fields at z = d yields

k., d k. L d
14 cot {kzla <—>] _ =20 cot |:k22a <— - —>] (15)
6]_ a 62 a a

and for TE fields yields

k., d k. L d
14 tan {kzla <—>] _ _fh=2a tan [/sza (- - —>] (16)
1 a H2 a a
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Figure 15. Magnitude of K, on a half-buried metallic pillbox with
the parameters: €; = 10.0, e2 = 1.0, 8* = 0.0°,L/a = 2.0 and k,a =
0.9147. EFIE: ..... , MFIE: —— CFT: —-.. CHIEF: — — —.

Solution of the transcendental equations (15) and (16) yields different
values for k,a for a certain X/ = and X, , respectively. The order

of these values is given by the subscript ¢ of the modes TM,,,, and
TE/ng -
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K, [A/m]

Figure 16. Magnitude of K, on a half-buried metallic pillbox with
the parameters: e; = 10.0, e = 1.0, 6 = 0.0°,L/a = 2.0 and k,a =
0.9147. EFIE: ....., MFIE: — CFT: —..., CHIEF: — — —.

Figure 17. Partially filled circular cylindrical cavity.
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