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1. INTRODUCTION

In Gazaryans’s remarkable paper [1] it has been considered a problem of
scalar wave propagation in one-dimensional random medium consisted
of a stack of homogeneous parallel dielectric layers, which had random
positions and did not intersect between them. The layers have been
thought as being embedded into a homogeneous background dielectric
medium. Gazaryan derived on base of the field superposition princi-
ple a mixed system of exact algebraic equations (refereed to further as
transfer relations) for wave reflection and transmission coefficients of
the medium and the wave amplitudes of waves in splits between layers.
Gazayan showed also a possibility to exclude the amplitudes of waves
in splits between layers from the transfer relations and to obtain on
this way a separate recurrent system of algebraic equations, which de-
scribe the incremental change of the wave reflection and transmission
coefficients of stack of n− 1 layers upon attachment of a n -s layer to
the stack and refereed to further as recurrent equations with a layer
attachment. These recurrent equations manifest the general invari-
ant imbedding principle in applied mathematics [2] discovered due to
Ambarzumyan [3]. Applying the derived transfer relations, Gazaryan
demonstrated analytically a phenomenon of Anderson localization [4]
of classical waves in one-dimensional random medium, i.e., the expo-
nential decay of ensemble averaged wave intensity transmitted through
the medium with increasing medium slab thickness.

One should remark here that forth long before the Gazaryan paper,
Gertsenshtein and Vasil’ev [5] had demonstrated analytically the An-
derson localization of classical waves in onemode waveguide, using a
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technique of the Fokker-Planck equation (or generalized diffusion equa-
tion) in the theory of Brownian motion, described the evolution with
increasing waveguide length of the probability distribution function of
the wave reflection coefficient of a wave from the waveguide. The writ-
ten by Gertsenshtein and Vasil’ev Fokker-Planck equation was gener-
alized later by Dorokhov [6] and independently by Mello, Pereyra, and
Kumar [7] on the case of disordered multimode wires in terms of the
probability distribution function of the eigenvalues of the transmission-
matrix product (Dorokhov-Mello-Kumar equation, see review [8] on
random matrix theory). The Gertsenshtein and Vasil’ev idea to use
the Fokker-Planck equation for probability distribution function of the
wave reflection coefficient from a random medium slab was realized
by Papanicolau [9] on base of the stochastic Riccati equation for the
wave reflection coefficient from an one-dimensional random medium
slab with dielectric permittivity fluctuations. Since this Papanicolau
paper, the methods of the stochastic Riccati equation in theory of wave
propagation in random continuous inhomogeneous media was being
elaborated by Klyatskin [10, 11].

As one may see,the Fokker-Planck equation technique allows of
to demonstrate the Anderson localization of classical waves in one-
dimensional random media more easily compared with the method of
Gazaryan’s transfer relations. Nevertheless, it does not reduce sig-
nificance of the Gazaryan transfer relations in general wave multiple
scattering theory because of the following reasons.

First, the Fokker-Planck equation technique is restricted by the limit
of either a small difference between the dielectric permittivity of layers
of a stack and the dielectric permittivity of the background or weak
dielectric permittivity fluctuations of an one-dimensional continuous
inhomogeneous random medium. Second, a derivation of the Fokker-
Planck equation makes use an averaging over fast oscillations of the
wave reflection coefficient from a random medium slab with increasing
of the slab thickness, an justification for this averaging being a diffi-
cult problem (see discussion in [11]). Third, in the case of not small
difference between the dielectric permittivity of layers of a stack and
the background the Fokker-Planck equation should replaced by more
complicative for analytic solution the Kolmogorov-Feller equation (see,
e.g., [12]). Fourth, in the case of three-dimensional random medium
the wave reflection coefficient from a random medium slab becomes of
an integral operator (see, e.g., [11]) and the Fokker-Planck equation
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gets a functional form [13], that seems much more complicative for
analytic solution compared with one-dimensional case.

Perhaps because of these difficulties concerning with the Fokker-
Planck equation some authors have applied the numerical methods to
solution of the stochastic Riccati equation for the wave reflection coef-
ficient from and an corresponding equation for the wave transmission
coefficient through, e.g., an one-dimensional random medium slab [11]
to justify the above averaging over fast oscillations of the wave reflec-
tion coefficient, and a surface disordered waveguides [14] to study a
new regime for coexistence of ballistic, diffuse and localized modes in
the transmission of waves.

It would be advantageous to note here the applications of the Ric-
cati equation (or more generally, the imbedding method) also to an-
other,apart from the mentioned, problems such as wave propagation
in periodic continuous inhomogeneous one-dimensional medium [11].
Especially interesting for us is to call attention to the imbedding equa-
tions [11] for the well known physical problem of wave scattering from
rough, and in particular periodic dielectric interface, the imbedding
parameter having been chosen for these equations in a direction along
the unperturbed interface. Ordinarily this physical problem is stud-
ied either by a straightforward approach process using exact integral
equations for the boundary values of the field and then obtaining ap-
proximative solutions of these equations or by applying to the given
boundary problem perturbative analysis. Some of these methods are
presented in monographs [15–17] and papers [18–27]. It is worth not-
ing for us paper [28] where the Wood anomalies [29], discovered by
light diffraction from a grating, are studied by light diffraction on a
rough surface. The problem of wave scattering from periodic dielectric
interface are considered using the Waterman [30] extended boundary
condition approach in papers [31–35], for the case of one-dimensional
interface, and in [36] for the case of two-dimensional interface.

In the last decade a transfer matrix approach has found a wide ap-
plication in wave multiple scattering theory. This approach as turns
out to be closely allied to Gazaryan’s transfer relations and is not
restricted, in particular, by the case of small difference between the
dielectric permittivity of layers of a stack and the background. A
convenient property of the transfer matrix is the multiplicative com-
position rule: the transfer matrix of a stack of layers is the product of
the single layer transfer matrices. A basis of the transfer matrix ap-
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proach was formulated by Barnes and Pendry [37]. They derived with
the aid of the field superposition principle the recurrent equations with
a layer attachment and showed a possibility to resolve this recurrent
equations in terms of the fundamental transfer matrix. In papers [38]
and [39] of Pendry with co-authors, the transfer matrix approach was
applied to prove a maximal fluctuation theorem for wave propagation
in random media, and to consider the effect of coherent backscattering
enhancement, respectively.

There is a growing interest in recent years in the studies of the prop-
agation of electromagnetic waves in periodic, both in two and three di-
mensions, dielectric structures, photonic band structures, based physi-
cally on interesting analogy with electron wave propagation in crystals
[40, 41]. The existence in such structures of a frequency gap (see, e.g.,
[42]) where the propagation of electromagnetic waves is forbidden for
all wave vectors, can have profound impact on several scientific and
technical disciplines (see, e.g., [43, 44]), in particular for understand-
ing of wave localization in dense random media [41, 45]. In paper [46]
the transfer matrix technique was used to calculate the transmission
coefficient versus the frequency of the incident wave for different po-
larizations in two-dimensional periodic and/or random arrangement
of dielectric cylinders. In paper [47] the photonic band gap effect in
a three-dimensional solid state lattice made of closely packed silica
spheres was reported together with results simulated by numerical cal-
culations within the framework of a quasicrystalline approximation.

The transfer matrix approach is appeared also from consideration of
waves in splits between layers of an inhomogeneous medium as shown
by Pendry and Roberts [39] and Pendry [48]. Such system of mutual
interaction equation for wave amplitudes in splits between layers was
formulated independently by Ngo and Rino [49] using the Foldy-Lax-
Twersky formalism with applications [50, 51] to some two-scatterer
problems. Earlier a system of mutual interaction equations was ob-
tained, in fact, by Kouznetsov and Budanov [52] with further applica-
tion by Kamzolov and Kouznetsov [53] to the problem of wave multiple
scattering at a dielectric interface.

The aim of our paper is to show, after [54], that the Watson compo-
sition rule [55] of the scattering (T-matrix) operator leads to general-
ization of the Gazaryan transfer relations on the wave propagation case
in a three-dimensional inhomogeneous medium as well as to a general-
ized Riccati equation for the operator wave reflection coefficient and an



44 Barabanenkov et al.

corresponding equation for the operator wave transmission coefficient
of the medium. We demonstrate also in the paper an application of
the derived Riccati equation to the problem of electromagnetic wave
scattering from a periodic dielectric one-dimensional interface. The
choosing the imbedding parameter in direction perpendicular to the
unperturbed interface according to Kamzolov and Kouznetsov [53],
but not along of this one as in [11], allows of us to treat the problem of
interface wave scattering similar to the problem of volume scattering.

The plan of the paper is as follows. In Sec. 2 the Watson composition
rule of the scattering operators is adopted to the problem of scalar wave
propagation in an inhomogeneous three-dimensional dielectric layered
medium. The basis definitions for the operator wave reflection and
transmission coefficients of the layered medium as well as the operator
wave amplitudes of waves in splits between layers are given in terms of
scattering operators. The optical theorem and reciprocity for the op-
erator wave reflection and transmission coefficients are proved in Sec.
3 using the optical theorem and reciprocity for the scattering operator.
Sec. 4 includes derivation of the most general statements considered in
the paper, that is the transfer relations and the resulting from these
ones recurrent equations with a layer attachment; short derivation of
the fundamental transfer matrix operator and the mutual interaction
equations are given too. The generalized Riccati equation for the oper-
ator wave reflection coefficient and an corresponding equation for the
operator wave transmission coefficient of the medium are derived in
Sec. 5 from the recurrent equations with a layer attachment. In Sec. 6
the generalized Riccati equation for the wave reflection coefficient and
a corresponding equation for the wave transmission coefficient of the
medium are written in detail for the problem of electromagnetic wave
scattering from a periodic dielectric one-dimensional interface in the
case of TE polarization, using the Bloch (Floquet) theorem. Results
of numerical solution to the Riccati equation for wave reflection from
a periodic one-dimensional interface of two dielectric half-spaces are
presented in Sec. 7. Sec. 8 gives our conclusions and discussions.

2. BASIC DEFINITIONS FOR WAVE PROPAGATION IN
A LAYERED MEDIUM IN TERMS OF SCATTERING
OPERATOR

We start with the scalar Helmholtz wave equation for a monochro-
matic wave field Ψ(r) in a three-dimensional inhomogeneous dielectric



Transfer relations 45

isotropic medium

∆Ψ(r) +
ω2

C2
ε(r)Ψ(r) = 0 (1)

Here the dielectric permittivity ε(r) = εbac + δε(r) includes a back-
ground constant εbac and the inhomogeneous part δε(r) . We suppose
both the wave field Ψ(r) and its normal derivative on any surface to
be continuous on this one. Such boundary conditions on any surface
together with the radiation conditions in infinite allow one to present
a solution to the wave equation (1), using the operator denotations
in the three-dimensional domain of the position vector r , in the form
(see, e.g., [56])

Ψ = Ψ◦ +G◦TΨ◦ (2)

where Ψ◦(r) is the incident field, G◦(r) = exp(ik◦r)/(−4πr) is the
Green function in a background medium with the wave number k◦ =
(ω/C)

√
εbac and T (r, r′) is the scattering ( T -matrix) operator of

the scattering medium. The scattering operator obeys the Lippman-
Schwinger equation

T = V + V G◦T (3)

with the effective scattering potential V (r) of the medium, defined by

V (r) = −k2
◦
δε(r)
εbac

(4)

For the case of a two-dimensional scattering medium with the scatter-
ing potential V (r) = V (x, z) in the cortisone coordinate system x, y, z,
where the x, z plane coincides with the incident plane and the electric
vector of the incident wave is parallel to the y axis ( TE polarization),
the scalar Helmholtz equation (1) describes the electromagnetic wave
field propagation in the medium.

2.1 Operator Wave Reflection and Transmission Coefficients

Let a wave field Ψ◦(r) be incident upon the left boundary z = 0
of a scattering medium occupied the region of the layer 0 < z < L .
We apply to equation (2) the two-dimensional Fourier transform with
respect to transverse to the z axis component r⊥ of the position
vector r in the form

Ψ(r) =
∫
k⊥

exp(ik⊥r⊥)Ψ(k⊥, z) (5)
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In the right hand side (r.h.s.) of this equation and henceforth the
notation

∫
k⊥

= (2π)−2
∫
dk⊥ is used, with k⊥ being the transverse

to the z axis component of a wave vector k . Writing similar to (5)
the incident field with the transverse, relatively to the z axis, Fourier
transform Ψ◦(k⊥, z) = Ψ◦(k⊥) exp(iσkz) where σk =

√
k2◦ − k2

⊥ as

k⊥ < k◦ and σk = i
√
k2
⊥ − k2

o as k⊥ > k◦ , one can find for the
transmitted, z > L , and reflected, z < 0 , wave fields the following
representations

Ψ(k⊥, z) = exp(iσkz)
∫
k
′
⊥

A(k⊥, k
′
⊥)Ψ◦(k

′
⊥) (6)

as z > L and

Ψ(k⊥, z) = Ψ◦(k⊥, z) + exp(−iσkz)
∫
k
′
⊥

B(k⊥, k
′
⊥)Ψ◦(k

′
⊥) (7)

as z < 0 . The operator wave transmission A(k⊥, k
′
⊥) and reflection

B(k⊥, k
′
⊥) coefficients of the layer in the r.h.s. of equations (6) and (7)

are given by

A(k⊥, k
′
⊥) = δ

k⊥,k
′
⊥

+
1

2iσk
a(k̂+, k̂+′) (8)

and
B(k⊥, k

′
⊥) =

1
2iσk

a(k̂−, k̂+′) (9)

Here and henceforth δ
k⊥,k

′
⊥

denotes (2π)2δ(k⊥ − k
′
⊥) , k̂ is the unit

vector of a vector k, k̂2 = 1 ; the vectors k± are defined by k
± =

k⊥±σkẑ , respectively, with ẑ being the unit vector along the z axis;
a(k̂, k̂′) is the scattering amplitude of the layer defined as

a(k̂, k̂′) = T (k, k′) (10)

with T (k, k′) being the three-dimensional Fourier transform of the
scattering operator T (r, r′) and k2 = k′2 = k2

◦ .
Let now a wave field Ψ̃◦(r) be incident upon the right boundary

z = L of the layer with the transverse, relatively to the z axis, Fourier
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transform Ψ̃◦(k⊥, z) = Ψ̃◦(k⊥) exp(−iσkz) . In this case one can find
for the transmitted, z < 0 , and reflected, z > L , wave fields similar
to (6) and (7) the representations

Ψ̃(k⊥, z) = exp(−iσkz)
∫
k
′
⊥

Ã(k⊥, k
′
⊥)Ψ̃◦(k

′
⊥) (11)

as z < 0 and

Ψ̃(k⊥, z) = Ψ̃◦(k⊥, z) + exp(iσkz)
∫
k
′
⊥

B̃(k⊥, k
′
⊥)Ψ̃◦(k

′
⊥) (12)

as z > L . Here the operator wave transmission Ã(k⊥, k
′
⊥) and reflec-

tion B̃(k⊥, k
′
⊥) coefficients of the layer are given by

Ã(k⊥, k
′
⊥) = δ

k⊥,k
′
⊥

+
1

2iσk
a(k̂−, k̂−

′
) (13)

and
B̃(k⊥, k

′
⊥) =

1
2iσk

a(k̂+, k̂−
′
) (14)

2.2 Watson Composition Rule of Scattering Operators for
Stack of n Layers

Let a scattering medium be a stack of n layers with the scattering
potential Vm(r) of the m’s layer, m = 1, 2, ..., n (see Fig. 1).

The scattering potential V1,n(r) of the medium, occupied again the
region 0 < z < L , is defined by the sum

V1,n(r) =
n∑

m=1

Vm(r) (15)

under condition
Vm(r)Vm′(r) = 0 (16)

as m �= m′ because of the layers are supposed to be not intersected
between them.

The scattering operator T1,n of the medium, satisfying the
Lippman-Schwinger equation (3) with potential V replaced by (15),
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Figure 1. A three-dimensional medium presented as a stack of n lay-
ers with splits between them. In the top and bottom pictures the wave
be incident upon the 1 st and the n’s layer of the stack, respectively.

can be written according to the Watson composition rule [55] as the
sum

T1,n =
n∑

m=1

Tm1,n (17)

where the new set of operators Tm1,n , m = 1, 2, ..., n , are found from
the system of n operator equations in the three-dimensional domain
of the position vector

Tm1,n = Tm,m + Tm,mG◦
n∑

m′=1
m�=m′

Tm
′

1,n (18)

with Tm.m being the single scattering operator of the m’s layer, i.e.,
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satisfying the Lippman-Schwinger equation (3) with V replaced by
Vm . The quantity Tm1,n may be thought as a scattering operator of
the m ’s layer surrounded by the other n− 1 layers.

Let a wave field Ψ◦(r) be incident upon the left boundary z = 0 of
the first layer of the stack (see Fig. 1, the top picture). For the wave
field Ψ1,n(r) in splits between layers, defined by equation (2) with
T replaced by T1,n , one can find, using the two-dimensional Fourier
transform (5) and the condition (16) of non-intersection of the layers
the following representation

Ψ1,n(k⊥, z) = exp(iσkz)
∫
k
′
⊥

Am|m+1(k⊥, k
′
⊥)Ψ◦(k

′
⊥)

+ exp(−iσkz)
∫
k
′
⊥

Bm|m+1(k⊥, k
′
⊥)Ψ◦(k

′
⊥) (19)

with z being in the split between the m’s and (m+ 1)’s layers, m =
1, 2, ..., n − 1 . The operator wave amplitudes Am|m+1(k⊥, k

′
⊥) and

Bm|m+1(k⊥, k
′
⊥) of waves in the split between the layers in the r.h.s.

of equation (19) are given by

Am|m+1(k⊥, k
′
⊥) = δ

k⊥,k
′
⊥

+
1

2iσk

m∑
m′=1

am
′

1,n(k̂
+, k̂+′) (20)

and

Bm|m+1(k⊥, k
′
⊥) =

1
2iσk

n∑
m′=m+1

am
′

1,n(k̂
−, k̂+′) (21)

In the r.h.s. of (20) and (21) am1,n(k̂, k̂
′) denotes a scattering amplitude

of the m’s layer surrounded by the other n−1 layers, being defined by
equation (10) with T (k, k′) replaced by the three-dimensional Fourier
transform Tm1,n(k, k

′) of a scattering operator Tm1,n(r, r
′) under condi-

tion k2 = k′2 = k2
◦ .

Let now a wave field Ψ̃◦(r) be incident upon the right boundary
z = L of the n’s layer (see Fig. 1, the bottom picture). In this case
one can find for the wave field Ψ̃1,n(r) in the splits between layers
similar to (19) the representation

Ψ̃1,n(k⊥, z) = exp(−iσkz)
∫
k
′
⊥

Ãm|m+1(k⊥, k
′
⊥)Ψ̃◦(k

′
⊥)

+ exp(iσkz)
∫
k
′
⊥

B̃m|m+1(k⊥, k
′
⊥)Ψ̃◦(k

′
⊥) (22)
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with z being in the split between the m’s and (m + 1)’s layers,
m = 1, 2, ...., n − 1 . The operator wave amplitudes Ãm|m+1(k⊥, k

′
⊥)

and
B̃m|m+1(k⊥, k

′
⊥) of waves in the split between the layers in the r.h.s.

of equation (22) are given by

Ãm|m+1(k⊥, k
′
⊥) = δ

k⊥,k
′
⊥

+
1

2iσk

n∑
m′=m+1

am
′

1,n(k̂
−, k̂−

′
) (23)

and

B̃m|m+1(k⊥, k
′
⊥) =

1
2iσk

m∑
m′=1

am
′

1,n(k̂
+, k̂−

′
) (24)

3. OPTICAL THEOREM AND RECIROCITY FOR WAVE
REFLECTION AND TRANSMISSION COEFFICIENTS

The optical theorem for the scattering operator T of a non-absorptive
scattering medium has got the form (see, e.g., [56]) T −T ∗ = T ∗(G◦−
G∗◦)T where the asterisk denotes the Hermitian adjoin of a opera-
tor. Applying to this optical theorem the two-dimensional Fourier
transform like (5) leads to the following relation for the operator wave
transmission (13) and reflection (14) coefficients

∫
k⊥<k◦

σk[Ã∗(k⊥, k
′
⊥)Ã(k⊥, k

′′
⊥) + B̃∗(k⊥, k

′
⊥)B̃(k⊥, k

′′
⊥)] = σk′δk′⊥,k

′′
⊥

(25)
where the asterisk denotes the complex conjugate of a quantity. It
is worth noting that integration in the left hand side (l.h.s.) of (25)
is performed in k⊥-space over the propagating waves, k⊥ < k◦ , only
(but not over both the propagating and evanescent, k⊥ > k◦ waves).
Actually, one may see the relation (25) in [48] as a consequence of the
current conversation.

The reciprocity for the scattering operator in the form T (k, k′) =
T (−k′,−k) gives the reciprocity for the operator wave transmission
(8), (13) and reflection (9), (14) coefficients written as (compare with
reciprocity in [49])

σkÃ(k⊥, k
′
⊥) = σk′A(−k′⊥,−k⊥) (26)



Transfer relations 51

and
σkB(k⊥, k

′
⊥) = σk′B(−k′⊥,−k⊥) (27)

σkB̃(k⊥, k
′
⊥) = σk′B̃(−k′⊥,−k⊥) (28)

The reciprocity (26) relates the operator wave transmission coefficient
Ã to A, whereas the reciprocity (27) and (28) relates the operator wave
reflection coefficient B to B and B̃ to B̃ , respectively.

4. TRANSFER RELATIONS

Let us return to definition of the operator wave reflection and trans-
mission coefficients of a scattering medium as a stack of n layers, given
in terms of the scattering operator Ti,n of the medium as well as to
definition of the operator amplitudes of waves in splits between layers
of the stack, given in terms of the scattering operators Tm1,n . The fol-
lowing mixed system of exact operator equations-transfer relations is a
direct consequence of the Watson composition rule (15–18) and above
definitions

B1,n = B1,m + Ã1,mBm|m+1 (29)
Bm|m+1 = Bm+1,nAm|m+1 (30)

Am|m+1 = A1,m + B̃1,mBm|m+1 (31)
A1,n = Am+1,nAm|m+1 (32)

and

B̃1,n = B̃m+1,n +Am+1,nB̃m|m+1 (33)

B̃m|m+1 = B̃1,mÃm|m+1 (34)

Ãm|m+1 = Ãm+1,n +Bm+1,nB̃m|m+1 (35)

Ã1,n = Ã1,mÃm|m+1 (36)

where m = 1, 2, ...., n − 1 . All products in these transfer relations
have got the operator meaning in the two-dimensional k⊥-space, e.g.,
equation (29) is written in details as

B1,n(k⊥, k
′
⊥) = B1,m(k⊥, k

′
⊥) +

∫
p⊥

Ã1,m(k⊥, p⊥)Bm|m+1(p⊥, k
′
⊥)

(29a)
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The transfer relations (29–36) allow of a physically transparent inter-
pretation in terms of the field superposition principle.

First the transfer relations (29–36) were obtained by Gazaryan [1] in
the case of one-dimensional scattering medium using the field superpo-
sition principle. For the case of three-dimensional scattering medium
the transfer relations (29–36) were derived in [54] on base of the Wat-
son composition rule (15–18). All transfer relations are derived by the
same way which becomes clear from derivation of equation (29) (see
Appendix).

4.1 Recurrent Equations with A Layer Attachment

The operator amplitudes of waves in splits between layers of the
stack layers may be excluded from the transfer relations (29–36) that
leads to the following separate system of recurrent equations with a
layer attachment

A1,n = An,n

(
I − B̃1,n−1Bn,n

)−1
A1,n−1 (37)

B1,n = B1,n−1 + Ã1,n−1Bn,n

(
I − B̃1,n−1Bn,n

)−1
A1,n−1 (38)

and

Ã1,n = Ã1,n−1

(
I −Bn,nB̃1,n−1

)−1
An,n (39)

B̃1,n = B̃n,n +An,nB̃1,n−1

(
I −Bn,nB̃1,n−1

)−1
An,n (40)

where the unit operator I is defined by its kernel δ
k⊥,k

′
⊥

. In detail,
equations (37) and (38) are obtained by excluding the operator Am|m+1

from relations (30) and (31), as well as equations (39) and (40) are
obtained by excluding the operator Ãm|m+1 from relations (34) and
(35).

First the recurrent equations (37) and (38) were derived by
Gazaryan [1] from relations (30) and (31) in the case of one-dimensional
scattering medium. Barnes and Pendry [37] obtained a system equa-
tions similar to (39) and (40) using the field superposition principle
in the case of three-dimensional scattering medium. Total system of
the recurrent equations with a layer attachment (37–40) was derived
from the transfer relations (30, 31, 34, 35) in [54] for the case of three-
dimensional scattering medium.
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4.2 Fundamental Transfer Matrix

As was shown by Barnes and Pendry [37] the system of recurrent
equations (39) and (40) may be resolved in the form[

B̃1,n · Ã−1
1,n

Ã−1
1,n

]
= Mn

[
B̃1,n−1 · Ã−1

1,n−1

Ã−1
1,n−1

]
(41)

where the fundamental transfer matrix operator Mn is given by

Mn =
[
An,n − B̃n,n · Ã−1

n,n ·Bn,n, B̃n,n · Ã−1
n,n

−Ã−1
n,n ·Bn,n, Ã−1

n,n

]
(42)

4.3 Mutual Interaction Equations

It is difficult (if not impossible) to exclude all operator wave reflec-
tion and transmission coefficients from the transfer relations (29–36)
getting a separate system equations for the operator amplitudes of
waves in splits between layers of the stack. But such system of mutual
interaction equations may be obtained from the Watson composition
rule (15–18) directly and has the form

Am|m+1 = Am,mAm−1|m + B̃m,mBm|m+1 (43)

Bm−1|m = Bm,mAm−1|m + Ãm,mBm|m+1 (44)

where m = 1, 2, ..., n− 1 .
First the system of equations (43) and (44) was derived by

Kouznetsov and Budanov [52] in the case of electromagnetic wave
propagation in a three-dimensional scattering medium consisting of
dipole scatterers on base of the field superposition principle. Pendry
and Roberts [39] and Pendry [48] formulated the system of equations
(43) and (44) for wave propagation in a three-dimensional scattering
medium using the fields superposition principle too. Ngo and Rino [49]
derived the mutual interaction equations (43) and (44) in general case
of electromagnetic wave propagation in the three-dimensional discrete
medium using the Foldy-Lax-Twersky formalism.

According to [39, 48] the system of equations (43) and (44) is re-
solved in terms of the fundamental transfer matrix operator (42) as
follows [

Am|m+1

Bm|m+1

]
= Mm

[
Am−1|m
Bm−1|m

]
(45)
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5. GENERALIZED RICCATI EQUATION

The recurrent equations with a layer attachment (37) and (38) as well
as (39) and (40) manifest the invariant imbedding principle for wave
reflection and transmission coefficients of a medium as stack of layers.

Let us consider the case of a thin n ’s layer which attached with the
operator wave transmission An,n and Ãnn and reflection Bn,n and
B̃n,n coefficients subject to the conditions

An,n = I + ∆An,n (46)
∆An,n = O(∆z) (47)
Bn,n = O(∆z) (48)

Ãn,n = I + ∆Ãn,n (49)

∆Ãn,n = O(∆z) (50)

B̃n,n = O(∆z) (51)

where a thickness ∆z of the n’s layer tends to zero ∆z → 0 . Substi-
tuting (46–51) into the r.h.s. of (40) and ignoring the terms which are
less than O(∆z) , one can obtain

B̃1,n − B̃1,n−1

∆z
=
B̃n,n
∆z

+
∆An,n

∆z
B̃1,n−1

+ B̃1,n−1
∆Ãn,n

∆z
+ B̃1,n−1

Bn,n
∆z

B̃1,n−1 (52)

that is a generalized Riccati equation for the operator wave reflection
coefficient B̃1,n of the medium.

In similar manner, substituting (46–51) into the r.h.s. of (39) gives

Ã1,n − Ã1,n−1

∆z
= Ã1,n−1

(
∆Ãn,n

∆z
+
Bn,n
∆z

B̃1,n−1

)
(53)

that is a generalized corresponding equation for the operator wave
transmission coefficient Ã1,n of the medium.

Equations (52) and (53) were derived from the recurrent equations
with a layer attachment (39) and (40) in [54].
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6. RICCATI EQUATION FOR WAVE SCATTERING
FROM PERIODIC ONE-DIMENSIONAL INTERFACE

Let us turn to the case of a two-dimensional scattering medium with the
scattering potential V (r) = V (x, z) . In this case the ky component of
the wave vector k is conserved by a wave reflection from or transmission
through the scattering medium. This property manifests itself in the
following representation for the three-dimensional Fourier transform of
the scattering operator of the scattering medium

T (k, k′) = δky,k′yT (ky; kx, kz; k′x, k
′
z) (54)

Here and henceforth δp,p′ denotes 2πδ(p − p′) and T (p; kx, kz;
k′x, k

′
z) is the two-dimensional Fourier transform of the scattering op-

erator T (p;x, z;x′, z′) satisfying the Lippman-Schwinger equation (3)
with the two-dimensional scattering potential V (x, z) and
one-dimensional Fourier transform G◦(p;x, z, ) of the Green function
in a background with respect to y given by

G◦(p;x, z) =
∫
dy exp(−ipy)G◦(x, y, z) (55)

In accordance with (54), the operator wave transmission and reflection
coefficients of the medium defined by equations (8, 9, 13, 14) take in
the case of the two-dimensional scattering medium the form

A(k⊥, k
′
⊥) = δky,k′yA(kx, k′x) (56)

B(k⊥, k
′
⊥) = δky,k′yB(kx, k′x) (57)

Ã(k⊥, k
′
⊥) = δky,k′yÃ(kx, k′x) (58)

B̃(k⊥, k
′
⊥) = δky,k′yB̃(kx, k′x) (59)

where all quantities in the r.h.s. of these equations are any function of
ky .

In particular, for a thin layer of the two-dimensional medium oc-
cupied the region between planes z = L and z = L + ∆L one can
apply the perturbative method to solution of the Lippman-Schwinger
equation (3) with result
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T (p;x, z;x′, z′) ∼= V (x, z)δ(x− x′)δ(z − z′) (60)

as L < z < L + ∆L . Substituting (60) into the r.h.s. of equations
(56–59) and denoting

V (p, z) =
∫ +∞

−∞
dx exp(−ipx)V (x, z) (61)

gives

∆A(kx, k′x)
∆L

→ 1
2iσk

exp[−i(σk − σk′)L] V (kx − k′x, L) (62)

B(kx, k′x)
∆L

→ 1
2iσk

exp[i(σk + σk′)L] V (kx − k′x, L) (63)

∆Ã(kx, k′x)
∆L

→ 1
2iσk

exp[i(σk − σk′)L] V (kx − k′x, L) (64)

B̃(kx, k′x)
∆L

→ 1
2iσk

exp[−i(σk + σk′)L] V (kx − k′x, L) (65)

as ∆L→ 0 .
Using the limits (62–65) in the r.h.s. of the generalized Riccati equa-

tion (52) allows one to write for a quantity R(q, q′) defined by substi-
tution

B̃(kx, k′x) = exp[−i(σk + σk′)L] R(kx, k′x) (66)

the following Riccati equation

dR(q, q′)
dz

− i(σq + σq′)R(q, q′)

=
1

2iσq
V (q − q′, z) +

∫
q1

1
2iσq

V (q − q1, z)R(q1, q′)

+
∫
q1

R(q, q1)
1

2iσq1
V (q1 − q′, z)

+
∫
q1

∫
q2

R(q, q1)
1

2iσq1
V (q1 − q2, z)R(q2, q′) (67)
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where σq =
√
k2◦ − q2 − k2

y and
∫
q = (2π)−1

∫
dq . The reflected from

the two-dimensional scattering medium wave field (12) in the trans-
verse to z axis Fourier transform representation (5) takes due to the
substitution (66) the form

Ψ̃(k⊥, z) = Ψ̃◦(k⊥, z) + exp[iσk(z − L)]
∫
k′x

R(kx, k′x)
˜̃Ψ◦(k′x, ky) (68)

as z > L , with ˜̃Ψ◦(k⊥) = exp(−iσkL)Ψ̃◦(k⊥) . First the Riccati
equation of type (67) was obtained with the help of another method by
Klyatskin [11] for wave reflection from a three-dimensional continuous
inhomogeneous medium.

In similar manner, using the limits (62–65) in the r.h.s. of the gen-
eralized corresponding equation (53) allows one to write for a quantity
T (q, q′) defined by substitution

Ã(kx, k′x) = exp(−iσk′L)T (kx, k′x) (69)

the following equation

dT (q, q′)
dz

− iσq′T (q, q′) =
∫
q1

T (q, q1)
1

2iσq1
V (q1 − q′, z)

+
∫
q1

∫
q2

T (q, q1)
1

2iσq1
V (q1 − q2, L)R(q2, q′)

(70)
The transmitted through the two-dimensional scattering medium wave
field (11) in the transverse to z axis Fourier transform representation
(5) takes due to the substitution (69) the form

Ψ̃(k⊥, z) = exp(−iσkz)
∫
k′x

T (kx, k′x)
˜̃Ψ◦(k′x, ky) (71)

as z < 0 .

6.1 Scattering from Periodic One-dimensional Interface

Let us consider a scattering medium with a periodic one-dimensional
interface z = f(x) of two dielectric half-spaces z > f(x) and z < f(x)
with the dielectric permittivities εbac and ε , respectively (see Fig.2).
One may say about a transition region 0 < z < f(x) between two
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homogeneous dielectric half-spaces z > h = maxxf(x) and z < 0 .
We thought the lower homogeneous half-space as being a system of two
slabs, −L◦ < z < 0 and z < −L◦ , with the dielectric permittivities
ε and εbac , respectively, the plane z = −L◦ tending to the negative
infinitivity to the end, L◦ → 0 .

The dielectric permittivity ε(x, z) of the transition region may be
written in the form

ε(x, z) = εbac+(ε−εbac)
∞∑

µ=−∞

{
H

[
x− x′µ(z)

]
−H

[
x− x′′µ(z)

]}
(72)

Here x′µ(z) and x′′µ(z), x
′
µ(z) < x

′′
µ(z) , are roots of the equation

f(x) = z (73)

where 0 < z < h , and the step function H(x) = 1 as x ≥ 0 and
H(x) = 0 as x < 0 The periodic interface is supposed to have a
period Λ , f(x) = f(x+ Λ) and to be symmetrical relatively to the z
axis, f(x) = f(−x) . This suppositions allow one to write

x′µ(z) = −x◦(z) + µΛ (74)

and
x′′µ(z) = x◦(z) + µΛ (75)

where µ = 0,±1,±2 ,..... Now on the base of (4), (61), (72), (74), (75)
one gets

V (q, z) = 2V◦
∞∑

µ=−∞
fµ(z)δ

(
q − 2πµ

Λ

)
(76)

where V◦ = −k2
◦(ε− εbac)/εbac and

fµ(z) =
1
µ

sin
[
2πµ
Λ
x◦(z)

]
(77)

Turn now to the Riccati equation (67). One could suppose that a
solution for this equation in the case of the transition region with
the scattering potential (76) in the one-dimensional Fourier transform
representation (61) may be sought in the form

R(q, q′) =
∞∑

µ=−∞
Rµ,0(q′)δq,q′+2πµ/Λ (78)
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with a boundary condition

R(q, q′) −→ R(q)δqq′ (79)

as z → 0 where

R(q) = R∞(q)
1− exp(2iσ1qL◦)

1−R2∞(q) exp(2iσ1qL◦)
(80)

is the reflection coefficient of the homogeneous slab −L◦ < z < 0 with
σ1q =

√
k2

1 − q2 − k2
y and k1 = (ω/C)

√
ε , and

R∞(q) =
σq − σ1q

σq + σ1q

(81)

is the limit of (80) as L◦ → ∞ . the closed system of equations is
obtained for the matrix quantities Rµ,ν(q′) defined by

Rµν(q′) = Rµ−ν,0

(
q′ +

2πν
Λ

)
(82)

where µ, ν = 0,±1,±2, ... . This system of equations has got the form

dRµ,ν
dz

− i[σ(µ) + σ(ν)]Rµ,ν

= α(µ)fµ−ν(z) +
∞∑

µ1=−∞
α(µ)fµ−µ1(z)Rµ1,ν

+
∞∑

ν1=−∞
Rµ,ν1α(ν1)fν1−ν(z)

+
∞∑

µ1=−∞

∞∑
ν1=−∞

Rµ,ν1α(ν1)fν1−µ1(z)Rµ1,ν (83)

as 0 < z < h and

Rµ,ν(q′)→ R

(
q′ +

2πν
Λ

)
δµ−ν,0 (84)

as z → 0. In equation (83) σ(µ) denotes σq with q = q′+2πµ/Λ and
2πα(µ) = −iV◦/σ(µ) , in equation (84) δµ,ν is the Kronecker symbol.
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The physical meaning of quantities Rµ,0(q′) becomes clear after
substituting (78) into the r.h.s. of equation (68) for the wave field
reflected from the transition region. This substitution gives in the
domain of the position vector

Ψ̃(r) = exp[ik◦(r − hẑ)] +
∞∑

µ=−∞
Rµ,0(kox;h) exp[ik+

µ (r − hẑ)] (85)

as z > h . Here k◦ is the wave vector of the plane wave incident field
with k0y = 0; k+

µ is the wave vector of an upgoing reflected from the
transition region Bloch wave (mode, see [30]) defined by its components
k+
µx = kox+2πµ/Λ and k+

µz = σq with q = k+
µx . We indicate definitely

in the r.h.s. of (85) the relation of a solution to the matrix Riccati
equation (83) to z at z = h . As one can see from (85), the quantity
Rµ,0(k0x;h) means a partial wave reflection coefficient into the µ’s
Bloch mode from the transition region (a Bloch reflection coefficient).

In similar manner with the Riccati equation (67), the corresponding
equation (70) may be transformed in the case of the transition region
characterized by the scattering potential (76) in the one-dimensional
Fourier transform representation (61). One may try to seek a solution
to equation (70) in the form

T (q, q′) =
∞∑

µ=−∞
Tµ,0(q′)δq,q′+2πµ/Λ (86)

with a boundary condition

T (q, q′) −→ T (q)δqq′ (87)

as z → 0 were

T (q) =
4σqσ1q

(σq + σ1q)
2 exp(−iσ1qL◦)− (σq − σ1q)

2 exp(iσ1qL◦)
(88)

is the transmission coefficient of the homogeneous slab L◦ < z < 0
corresponding to the reflection coefficient (80). The closed system of
equations is obtained for the matrix quantities Tµ,ν(q′) defined by
Tµ,ν(q′) = Tµ−ν,0(q′ + 2πν/Λ) where µ, ν = 0,±1,±2, ....This system
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of equations has got the form

dTµ,ν
dz
− iσ(ν)Tµ,ν =

∞∑
ν1=−∞

Tµ,ν1α(ν1)fν1−ν(z)

+
∞∑

µ1=−∞

∞∑
ν1=−∞

Tµ,ν1α(ν1)fν1−µ1(z)Rµ1,ν (89)

as 0 < z < h and

Tµ,ν(q′) −→ T (q1 + 2πν/Λ)δµ−ν,0 (90)

as z → 0 .
The physical meaning of quantities Tµ,0(q′) becomes clear after sub-

stituting (86) into r.h.s. of equation (71) for the wave field transmitted
through the transition region. This substitution gives in the domain
of the position vector

Ψ̃(r) =
∞∑

µ=−∞
Tµ,0(k0,x;h) exp

{
ik
−
µ [r + (z + L◦)ẑ]

}
(91)

as z + L◦ < 0 . Here k
−
µ is the wave vector of an downcoming

transmitted through the transition region Bloch wave defined by its
components k−µx = kox + 2πν/Λ and k−µz = −σq with q = k−µx . We
indicate definitely in the r.h.s. of (91) the relation of a solution to the
matrix corresponding equation (89) to z at z = h . As one can see
from (91) the quantity Tµ,0(kox;h) means a partial wave transmission
coefficient into the µ’s Bloch mode through the transition region (a
Bloch transmission coefficient).

6.2 Poynting’s Theorem for Bloch’s Reflection and Transmis-
sion Coefficients

Expansions (85) and (91) of wave fields reflected from and transmit-
ted through the transition region of a periodic one-dimensional inter-
face along the Bloch waves allow of one to evaluate the energy flux in
these reflected and transmitted wave fields. Using the Poynting vector
Π = (1/2)(Ψ∗∇Ψ−Ψ∇Ψ∗) one gets
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Πz(z = h) = k0z +
∑
µ

k+
µz|Rµ,0(kox;h)|2 (92)

and
Πz(z = −L◦) =

∑
µ

k−µz|Tµ,0(kox;h)|2 (93)

for the energy flux in reflected and transmitted wave fields, respec-
tively; the z components (92) and (93) of the Poynting vector being
averaged along the planes z = h and z = −L◦ , respectively. It is
worth noting that the sums in the r.h.s. of (92) and (93) are taken over
only propagating Bloch modes subjected to the condition

|kox + 2πµ/Λ| ≤ k◦ (94)

The energy fluxes (92) and (93) should be identical in accordance with
the Poynting theorem for the non-absorptive scattering medium. This
requirement gives a relation between the Bloch reflection and transmis-
sion coefficients which can be obtained also from the optical theorem
(25).

7. NUMERICAL SOLUTION TO THE MATRIX RICCATI
EQUATION

The matrix Riccati equation (83) is an infinite system of differential
equations. To apply a numerical method we truncated this system hav-
ing considered the 29×29 differential equations (83) for a matrix reflec-
tion coefficient Rµ,ν(kox; z) which describe a mutual transformation of
the 29 first Bloch modes with the indices µ, ν = 0,±1,±2, ....,±14 .
We did not perform a general estimating the accuracy of the involved
truncating to the matrix Riccati equation (83) restricted themselves by
a selected comparison of the corresponding results related to solutions
to the two truncated systems of the 29 × 29 and 49 × 49 equations.
A difference between the corresponding results was turned out, in fact,
not more than 0.01% for the Bloch reflection coefficients with index
µ = 0,±1,±2, ....,±13 and to be 0.03% with µ = ±14 . Such small
difference indicates, as we suppose, a good convergence of the truncat-
ing procedure.

The truncated matrix Riccati equation (83) was solved numerically
with the aid of the 4th-order Runge-Kutta method in the case of a
triangular periodic interface of two half-spaces (see Fig. 2).
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Figure 2. A periodic one-dimensional interface of two dielectric half-
spaces with the dielectric permittivities εbac (upper half-space) and ε
(lower half-space). An auxiliary truncated interface is presented in the
form of a thin slice separated by a split from the rest truncated inter-
face. The wave vectors of upgoing reflected and downcoming transmit-
ted Bloch waves are depicted.

The time spent on numerical calculation was dependent on the step
∆z along the imbedding parameter z in scale of the maximum height
h of the interface (see Fig. 2), i.e., on the quantity ∆z/h . The choice
of the step was dependent, in its turn, on relative difference between
the dielectric permittivities of two half-spaces as well as on proximity
of the incident field wave vector to a resonant wave vector satisfying
according to [28] the condition (94) with the sign “equal” in the r.h.s.
of this one.
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Figure 3. The dependence of the absolute value |Rµ,0| of the Bloch
reflection coefficient on the imaginary partx �ε of the lower half-space
dielectric permittivity for modes µ = 0,±1,±2,±3,±4 and under
conditions �ε = 1.50, α = 0, h/λ = 0.75, κ = λ/Λ = 0.3 .

7.1 Results of Numerical Solution to The Matrix Riccati
Equation

Some results of numerical solution to the truncated matrix Riccati
equation (83) are plotted in Figs. 3–6. These figures illustrate de-
pendence of the absolute values |Rµ,0(kox;h)| of the complex Bloch
reflection coefficients, corresponding to the first most specific modes
with index µ = 0,±1,±2,±3,±4 from the 29 studied modes, on the
different parameters characterized the incident plane wave and the pe-
riodic dielectric interface.

Fig. 3 shows a simple relation of the Bloch reflection coefficients
to the imaginary part of the lower half-space dielectric permittivity,
the angle α between the incident plane wave direction and the z axis
(incidence angle) being supposed to be zero, α = 0 (normal incidence).
As one can see, the more is the mentioned imaginary part the more
becomes the absolute value of a Bloch reflection coefficient.

Fig. 4 depicts the Wood anomalous dependence of the Bloch re-
flection coefficients, at normal incidence, on the parameter κ = λ/Λ
defined by ratio of the incident field wavelength λ to the interface pe-
riod Λ . Let us remark that only 7 modes with index µ = 0,±1,±2,±3
describe the propagating waves under condition 0.25 < κ < 0.33(3) ,
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from the studied 29 modes. The others 22 modes describe the evanes-
cent waves. There are only 5 modes with index µ = 0,±1,±2 which
describe the propagating waves under condition 0.33(3) < κ < 0.5 . A
boundary point κ = 0.33(3) of these two κ intervals (see a vertical
dashed line in Fig. 4) corresponds to a resonance which was considered
in [28] and may be called the Wood resonance [29]. At this boundary
point, the 3-rd mode ( with index µ = ±3 ) is transformed from the
evanescent wave to propagating wave, the reflection coefficient of the 3-
rd mode being sharply changed. Because of connection between modes
due to the function (77) in the r.h.s. of the matrix Riccati equation
(83), the sharp changing in reflection coefficient of the 3-rd mode gives
changing also in reflection coefficients of some others modes (see in
Fig. 4 a changing in reflection coefficients of the 0-th and 4-th modes).
The curves of |Rµ,0| versus to parameter κ have become smooth since
κ has passed through the boundary point κ = 0.33(3) and the 3-rd
mode has been transformed into the propagating wave (see the interval
0.25 < κ < 0.33(3) in Fig. 4). By approximating to the second Wood
resonance at κ = 0.25 , the 4-th mode with index µ = ±4 is trans-
formed to the propagating wave, the behavior of the absolute values of
the Bloch reflection coefficients versus κ being similar to that related
to the point κ = 0.33(3) , described above. We did not perform in
detail the numerical solution to the truncated matrix Riccati equation
(83) in the immediate vicinity of the resonant points κ = 0.25 and
κ = 0.33(3) where the step ∆z/h along the imbedding parameter has
to be very small and the time spent on numerical calculation to be
very large, respectively.

Figs. 5 and 6 represent the Wood anomalous dependence of the
Bloch reflection coefficients, at the parameter κ = 0.3 , on the sine
of the incidence angle, sin α . In contrast to Fig. 4, we did not
mark here (by vertical dashed line) the immediate vicinities of the
Wood resonant points where the numerical solution to the truncated
matrix Riccati equation was not performed. In fact, the Wood res-
onances were observed at the incidence angles defined by: sin α =
0.1; 0.2; 0.4; 0.5; 0.7; 0.8 with the corresponding values of the mode
index: µ = 3; −4; 2; −5; 1; −6 , respectively. Let us remark that on
the curve of the 0-th mode one can see the responses on the resonances
in the 1-st mode at sin α = 0.7 and the 2-nd mode at sin α = 0.4 , but
practically it is difficult to distinguish the responses on resonances in
the 3-rd and 4-th modes at sin α = 0.1 and 0.2, respectively. Similarly,



66 Barabanenkov et al.

Figure 4. The dependence of the absolute value |Rµ,0| of the Bloch re-
flection coefficient on the parameter κ = λ/Λ for modes µ = 0,±3,±4
and under conditions ε = 1.50 + i0.20, α = 0, h/λ = 0.75.

on the curve of the 1-st mode one can see, besides the eigenresonance
at sin α = 0.7 , the responses on the resonances in the 2-nd and 3-rd
modes at sin α = 0.4 and 0.1, respectively. Also, on the curve of the 2-
nd mode there are seen, besides the eigenresonance at sin α = 0.4 , the
responses on the resonances in the 3-rd and 1-st modes at sin α = 0.1
and 0.7, respectively. These responses indicate that the mode with
an index µ experiences the most influence from the next modes with
indices µ± 1, µ± 2, ... .

8. DISCUSSION AND CONCLUSIONS

In this paper a total system of transfer relations for scalar wave propa-
gation in a three-dimensional inhomogeneous layered medium has been
derived from the composition rule for scattering T-matrices. The trans-
fer relations led to the separate recurrent systems of equations for wave
reflection and transmission coefficients of the medium under consider-
ation with a layer attachment. The recurrent system gave in the case
of infinitesimal attached layer the generalized Riccati equation for the
wave reflection coefficient and the corresponding equation for the wave
transmission coefficient of the medium with taken into account both
the propagating and evanescent waves.
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Figure 5. The dependence of the absolute value |Rµ,0| of the Bloch
reflection coefficient on the sine of the incidence angle, sin α , for modes
µ = 0,±1 and under conditions ε = 1.50 + i0.20, h/λ = 0.75, κ =
λ/Λ = 0.3 .

Figure 6. The dependence of the absolute value |Rµ,0| of the Bloch
reflection coefficient on the sine of the incidence angle, sinα , for modes
µ = ±2,±3 and under conditions ε = 1.50 + i0.20, h/λ = 0.75, κ =
λ/Λ = 0.3 .
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The generalized Riccati equation was applied to study the Wood
anomalies (resonances) by electromagnetic wave reflection from a peri-
odic one-dimensional interface of two dielectric half-spaces in the case
of TE polarization. It was shown by numerical solution to the ma-
trix Riccati equation in the representation of the Bloch modes that
the Wood resonances are related to a transformation of a Bloch mode
from the an evanescent to a propagating wave, and vice versa. The
effect of connection between Wood’s resonances was considered. Due
to this effect, one can see on the curve of the reflection coefficient, for
a given Bloch mode versus to, e.g., the incidence angle sine, both the
eigenresonance and the response on the resonances in the next modes.

It is useful to make a remark concerning the physical meaning of the
Riccati equation (83) applied to the problem of wave reflection from
a periodic one-dimensional interface. In accordance with Fig. 2, we
introduced an auxiliary set of truncated interfaces ζ = f(x, z) defined
by f(x, z) = f(x) as f(x) < z and f(x, z) = z as f(x, z) > z where
z was considered as the imbedding parameter. The truncated interface
with the parameter z+∆z was presented in the form of the truncated
interface with the parameter z and a thin slice of the transition re-
gion with the thickness ∆z , the slice having been separated from the
interface ζ = f(x, z) by an infinitesimal split. The analysis of wave
multiple scattering between the slice and the rest transition region with
the interface ζ = f(x, z) , made using the recurrent equation (40) with
a layer attachment, led to the matrix Riccati equation (83) for the
wave matrix reflection coefficient Rµ,ν(z) from the truncated periodic
interface ζ = f(x.z) . The desired wave matrix reflection coefficient
Rµ,ν(h) was brought by the limit z → h .

To consider electromagnetic wave reflection from or transmission
through a periodic one-dimensional interface in the case of TH polar-
ization, when the electric vector of the incident wave lies in the incident
x, z plane (see Fig. 2), one should generalize the total system of the
transfer relations derived in the paper as well as all consequences from
these relations on the case of vector wave electromagnetic field. Such
generalization of the transfer relations on the vector wave electromag-
netic fields may be performed with the aid of the special decomposing
the Green tensor function in a background into a principal part, with
an excluded volume (Lorentz cavity) about the singularity at the ori-
gin, and a Dirac delta function part according to [35, 57] where the
infinitesimal Lorentz cavity is chosen to be of a slab shape perpendic-
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ular to the z axis (see Fig. 1). What is more, one can write a Riccati
equation like (83) and a corresponding equation like (89) for the vector
electromagnetic wave reflection coefficient from and transmission coef-
ficient through of a two-dimensional periodic interface in the cases of
both TE and TH polarizations. In contrast to the method of integral
equations [36], our approach using the idea of the transfer relations
leads to describing the interface in terms of its intersections by planes
z = const similar to the method of the statistical topography [58, 59].

The general Riccati equation (52) and the corresponding equation
(53) for the operator wave reflection and transmission coefficients of
the medium, after having been written for the case of vector electro-
magnetic field, may be applied, of course, to the problems of volume
wave multiple scattering, for example, to calculate the coefficients of
wave reflection from and wave transmission through a periodic (both in
two and three dimensions) dielectric structures (photonic band struc-
tures). In particular, it is possible to bring the Riccati equation (67)
and the corresponding equation (70) in the case of a two-dimensional
arrangement of dielectric cylinders to the matrix Bloch representation
similar to one in equations (83) and (89) and to solve numerically the
obtained system of the matrix differential equations for the dielectric
cylinder two-dimensional arrangement wave reflection and transmis-
sion coefficients. This problem was solved in [46] by discretizing the
separate equations for the electric and the magnetic fields in the space
domain and using an equivalence between these discretized equations
and the tight-binding model of electronic localization.

In the end, we would like to underline the wide capabilities of the
generalized Riccati equation (52) for the operator wave reflection co-
efficient and the corresponding equation (53) for the operator wave
transmission coefficient of a medium due to these equations do not de-
pend on the details of the medium model. We believe, that equations
(52) and (53) may be applied, e.g., to study the effect of the Mie reso-
nance on diffuse wave multiple scattering in dense medium for different
concentrations of resonant scatterers that has been studied in [60] with
the aid of the random matrix theory.

ACKNOWLEDGMENT

The research described in this publication was made possible in part by
grant from the Russian Foundation for Basic Research numbers 98-02-
17086 and 99-02-17864. We are grateful to Professors D. Winebrenner,



70 Barabanenkov et al.

L. Tsang, A. Ishimaru and J. Sylvester for discussion of some possible
applications of the paper results to surface scattering, inverse scattering
problems and photonic and phononic band gap structures.

APPENDIX
Derivation of equation (29)

Let us show how one can derive the transfer relation (29) from the
Watson composition rule similar to (15–18).

Using the definition

Tm1,n = Vm + VmG◦T1,n (A.1)

one may compose the scattering operator T1,n of the medium as the
sum

T1,n = T 1,m
1,n + Tm+1,n

1,n (A.2)

where the new two operators T 1,m
1,n and Tm+1,n

1,n are found from the
system of two equations

T 1,m
1,n = T1,m + T1,mG◦T

m+1,n (A.3)

and
Tm+1,n

1,n = Tm+1,n + Tm+1,nG◦T
1,m
1,n (A.4)

In the Fourier transform representation the last three equations take,
under condition (16) because of the layers are supposed to be not
intersected, the form

T1,n(k, k
′) = T 1,m

1,n (k, k′) + Tm+1,n
1,n (k, k′) (A.5)

with

T 1,m
1,n (k, k′) = T1,m(k, k′) +

∫
p⊥

1
2iσp

T1,m(k, p−)Tm+1,n
1,n (p−, k′) (A.6)

and

Tm+1,n
1,n (k, k′) = Tm+1,n(k, k

′) +
∫
p⊥

1
2iσp

Tm+1,n(k, p+)T 1,m
1,n (p+, k′)

(A.7)
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Substitute now equation (A.6) for T 1,m
1,n into the r.h.s. of (A.5). Then

equation (A.5) being multiplied by factor 1/(2iσk) takes at k = k
−

and k
′ = k

+′ the form of the transfer relation (29).
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