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1. INTRODUCTION

Approximate boundary conditions have been widely used in problems
of wave propagation, radiation and guidance to simulate the mate-
rial and geometric properties of surfaces. For example, a metal plane
which is coated by a thin linear dielectric layer can be replaced by an
effective impedance boundary condition [1–4]. The general purpose
of the approximate effective boundary conditions is to simplify the
analytical or numerical solution of wave scattering problem involving
complex structures by e.g., converting a multiple-medium problem into
a single medium problem with a simple smooth boundary surface. In
the present paper we derive some effective boundary conditions for a
two-dimensional inhomogeneous nonlinear thin layer coated on a per-
fectly conducting surface. Nonlinear inhomogeneous thin films have
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Figure 1. The geometry of the problem.

many important applications in e.g., self-focusing, second harmonic
generation, optical amplification, couplers. In nonlinear guided optical
phenomena, a Kerr-type nonlinear medium whose refractive index de-
pends on light intensity is often used (see e.g., [5–6]). A thin coating of
such a Kerr-type nonlinear medium will be considered in the present
paper. The simple case of a thin layer coated on a planar metallic sur-
face is considered first. An asymptotic expansion of the field solution
in power series of the thickness is used after a suitable scaling along
the vertical direction with the thickness of the thin layer, and a second
order approximate boundary condition is derived. Numerical results
show that the second order approximate boundary condition gives a
sufficient accuracy for all incident angles when the coating thickness
is much smaller than the wavelength. The results are generalized to
the case when the nonlinear thin layer is coated on a curved metallic
surface.

2. AN INHOMOGENEOUS NONLINEAR THIN
COATING ON A PLANAR METALLIC SURFACE

In this section we consider a thin layer of inhomogeneous nonlinear
medium situated in 0 ≤ z ≤ h (the +z direction points upward; h is
the thickness of the thin layer; see Fig. 1 for the geometry of the prob-
lem). The inhomogeneous thin layer is superimposed on a perfectly
conducting surface at z = 0 . We consider a Kerr-type of nonlinear
medium, which is often used in nonlinear guided optical phenomena
(see e.g., [5–6]). Thus inside the thin layer the relative permittivity is
εr + α|E|2 . The permittivity is assumed to be y-independent. Above
the nonlinear thin layer there is a vacuum with a permittivity ε0 . The
permeability has a constant value µ0 everywhere.

For simplicity we consider the TE case for which the electric field
is perpendicular to the xz plane (i.e., the electric field is along the y
direction) and the field is y-independent. The time-dependence of all
fields is assumed to be e−iωt . Then the electric field E = E(x, z)iy ,
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where iy is the unit vector along the y direction, and the amplitude
E(x, z) satisfies the following nonlinear differential equation

(∂2
x + ∂2

z )E + k2
0

[
εr(x, z) + α(x, z)|E|2

]
E = 0, (1)

where ∂z = ∂
∂z and the wave number is

k0 = ω
√
µ0ε0. (2)

The boundary condition at z = 0 is

E|z=0 = 0. (3)

From the continuity of the tangential components of electric and mag-
netic fields it follows that both E and ∂zE are continuous cross any
z plane (note that ∂zE = −iωµ0Hx , where Hx is the x component
of the magnetic field).

Introduce a scaled coordinate system (x, τ) with the variable τ
defined by

τ = z/h. (4)

Let εr(x, τ) , α(x, τ) denote the values of εr and α at the point (x, τ)
in the scaled coordinate system (corresponding to the point (x, τh)
in the original (x, z) coordinate system). We want to describe the
asymptotic behavior of E(x, z;h) inside the nonlinear thin layer as h
goes to zero under the assumption that the “scaled” profiles εr(x, τ)
and α(x, τ) remain unchanged. More precisely, we want to derive an
approximate boundary condition on the surface z = h . We can find
such a condition by a scale analysis as follows. Introduce an asymptotic
expansion of E(x, z;h) of the following form:

E(x, z;h) = E(0)(x, τ) + hE(1)(x, τ)

+ h2E(2)(x, τ) + h3E(3)(x, τ) + . . . , (5)

for z ∈ [0, h] . Then, in the scaled coordinate system (x, τ) , the
differential equation (1) becomes

(
∂2
x +

1
h2
∂2
τ

)
E + k2

0εr(x, τ)E + k2
0α(x, τ)|E|2E = 0. (6)

The approximate boundary condition that we are looking for is a re-
lation between ∂zE(x, z;h) and E(x, z;h) at the surface z = h .
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We substitute the expansion (5) into Eq. (6), and match the coeffi-
cients of the h−2, h−1, h0, h, h2, . . . , terms, respectively. In doing this,
we assume that the thin layer does not vary very rapidly in the lateral
direction, so that we can treat ∂xE as a quantity of order O(1) (oth-
erwise one has to combine e.g., the homogenization theory to average
the material variation in the lateral direction; see e.g., [7]). Thus we
obtain

∂2
τE

(0) = 0, (7)

∂2
τE

(1) = 0, (8)

∂2
τE

(2) + ∂2
xE

(0) + k2
0εr(x, τ)E

(0) + k2
0α(x, τ)|E(0)|2E(0) = 0, (9)

∂2
τE

(3) + ∂2
xE

(1) + k2
0εr(x, τ)E

(1)

+ k2
0α(x, τ)

[
2

∣∣∣E(0)
∣∣∣2E(1) +

(
E(0)

)2
E

(1)
]

= 0, (10)

where E denotes the complex conjugate of E .
The boundary condition (3) becomes

E(0)(x, 0) + hE(1)(x, 0) + h2E(2)(x, 0) + . . . = 0,

which gives
E(p)(x, 0) = 0, p = 0, 1, 2, 3, . . . (11)

It then follows from Eqs. (7) and (8) that

∂τE
(0)(x, τ) = C0(x), (12)

∂τE
(1)(x, τ) = C1(x), (13)

E(0)(x, τ) = C0(x) τ, (14)

E(1)(x, τ) = C1(x) τ, (15)

where C0(x) and C1(x) are functions depending only on x .
From Eqs. (9) and (14), one obtains

∂2
τE

(2) = −τ∂2
xC0(x)− k2

0τεr(x, τ)C0(x)− k2
0α(x, τ)|C0(x)|2C0(x)τ3.

(16)
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Integrating the above equation with respect to τ , yields

∂τE
(2) = −1

2
τ2∂2

xC0(x)− k2
0C0(x)

∫ τ

0
τ1εr(x, τ1) dτ1

− k2
0|C0(x)|2C0(x)

∫ τ

0
τ3
1α(x, τ1) dτ1 + C(x), (17)

E(2) = −1
6
τ3∂2

xC0(x)− k2
0C0(x)

∫ τ

0

[∫ τ1

0
τ2εr(x, τ2) dτ2

]
dτ1

− k2
0|C0(x)|2C0(x)

∫ τ

0

[∫ τ1

0
τ3
2α(x, τ2) dτ2

]
dτ1 + C(x)τ, (18)

where C(x) is a function depending only on x . Putting τ = 1 in
Eq. (18), one obtains

C(x) = E(2)(x, 1) +
1
6
∂2
xC0(x) + k2

0C0(x)
∫ 1

0

[∫ τ1

0
τ2εr(x, τ2) dτ2

]
dτ1

+ k2
0|C0(x)|2C0(x)

∫ 1

0

[∫ τ1

0
τ3
2α(x, τ2) dτ2

]
dτ1. (19)

Substituting Eq. (19) into Eq. (17) with τ = 1 , yields

(
∂τE

(2)
)

(x, 1) =E(2)(x, 1)− 1
3
∂2
xC0(x)−

1
3
k2

0C0(x)ε̃r(x)

− 1
5
k2

0|C0(x)|2C0(x)α̃(x). (20)

where

ε̃r(x) = 3
{∫ 1

0
τ1εr(x, τ1) dτ1 −

∫ 1

0

[∫ τ1

0
τ2εr(x, τ2) dτ2

]
dτ1

}
, (21)

α̃(x) = 5
{∫ 1

0
τ3
1α(x, τ1) dτ1 −

∫ 1

0

[∫ τ1

0
τ3
2α(x, τ2) dτ2

]
dτ1

}
. (22)

In the special case when the nonlinear thin layer has only lateral vari-
ation, i.e., εr(x, τ) = εr(x) , α(x, τ) = α(x) , one has ε̃r(x) = εr(x)
and α̃(x) = α(x) .
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Therefore, one obtains from Eqs. (12)–(15) and (20) that

(∂τE) (x, 1) =
(
∂τE

(0)
)

(x, 1) + h
(
∂τE

(0)
)

(x, 1)

+ h2
(
∂τE

(0)
)

(x, 1) +O(h3)

= C0(x) + hC1(x) + h2E(2)(x, 1)− 1
3
h2∂2

xC0(x)

− 1
3
h2k2

0C0(x)ε̃r(x)−
1
5
h2k2

0|C0(x)|2C0(x)α̃(x)

+O(h3)

= E(0)(x, 1) + hE(1)(x, 1) + h2E(2)(x, 1)

− 1
3
h2∂2

xE
(0)(x, 1)− 1

3
h2k2

0E
(0)(x, 1)ε̃r(x)

− 1
5
h2k2

0|E(0)(x, 1)|2E(0)(x, 1)α̃(x) +O(h3)

=
[
E(x, 1) +O(h3)

]
− 1

3
h2∂2

x [E(x, 1) +O(h)]

− 1
3
h2k2

0 ε̃r(x) [E(x, 1) +O(h)]

− 1
5
h2k2

0α̃(x) |[E(x, 1) +O(h)]|2 [E(x, 1) +O(h)]

+O(h3)

= E(x, 1)− 1
3
h2∂2

xE(x, 1)− 1
3
h2k2

0 ε̃r(x)E(x, 1)

− 1
5
h2k2

0α̃(x)|E(x, 1)|2E(x, 1) +O(h3),

which gives the following second order approximation in the scaled
coordinate system

(∂τE) (x, 1) = E(x, 1)− 1
3
h2∂2

xE(x, 1)− 1
3
h2k2

0 ε̃r(x)E(x, 1)

− 1
5
h2k2

0α̃(x)|E(x, 1)|2E(x, 1). (23)

In the physical (x, z) coordinate system, the above equation becomes
the following second order approximate boundary condition

E(x, z)− h∂zE(x, z)− 1
3
h2∂2

xE(x, z)− 1
3
h2k2

0 ε̃r(x)E(x, z)

− 1
5
h2k2

0α̃(x)|E(x, z)|2E(x, z), z = h. (24)
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Therefore, one can replace the inhomogeneous nonlinear thin struc-
ture with the above boundary condition in e.g. the computation of the
scattered field above the nonlinear thin layer. Note that the boundary
condition (24) is still valid when the thin coating layer is vacuum, i.e.,
εr = 1 and α = 0 .

In a similar way one can derive also higher order approximate bound-
ary conditions for the inhomogeneous nonlinear thin coating.

A numerical example.

As a numerical example, we consider a stratified nonlinear thin coat-
ing with the following profiles

εr(z) =
[
4 + 2 cos

3πz
h

]
,

α(z) =
1
2

[
1 + sin

3πz
2h

]
, 0 < z < h

Equations (21) and (22) then gives

ε̃r = 3.864905087, α̃ = 0.1971738964.

The thickness of the coating is chosen to be h = 0.1π/k0 . We con-
sider a plane wave obliquely incident (with the incident angle θ ) on
this stratified nonlinear thin layer. As shown in the Appendix, if the
incident electric field on the surface is chosen to be

Einc = 1, z = h,

then the reflected electric field can be described by a (real-valued)
phase φ , i.e.,

Erefl = eiφ, z = h,

when both εr and α are real-valued. The dashed curve in Fig. 2
gives the reflection phase φ as a function of the incident angle θ
when the second order approximate boundary condition (24) is applied
(see the appendix for the numerical algorithm). The solid curve gives
the true values for φ calculated with a method for scattering from a
stratified nonlinear slab, namely, the shooting method [8]. The dotted
curve in Fig. 2 gives the corresponding values when the nonlinear thin
coating is replaced by a vacuum. The numerical results in Fig. 2 show
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Figure 2. The reflection phase φ as a function of the incident angle θ .
The dashed curve is obtained by using the effective boundary condition
(24). The solid curve is for the true values calculated with a shooting
method.

that the second order approximate boundary condition gives scattering
results of good accuracy for all incident angles when the thickness of
the coating is much smaller than the wavelength.

3. AN INHOMOGENEOUS NONLINEAR THIN
COATING ON A CURVED METALLIC SURFACE

In this section we generalize the results derived in the previous section
to the case when the inhomogeneous nonlinear thin layer is coated on
a metallic cylinder of an arbitrary smooth cross section described by
its boundary curve Γ .

Outside but sufficiently close to Γ , we denote by rΓ the orthogonal
projection of a point r on Γ , s a curvilinear abscissa (tangential
coordinate) of rΓ , and

n = |r− rΓ|. (25)

Then (s, n) is a parameterization of the neighborhood of the curve Γ .
The unit normal to the curve Γ at rΓ is denoted by n̂ . Denote by
c(s, n) the curvature at the point (s, n) of the curve

Γn ≡ {r = rΓ + nn̂}, (26)
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which is “parallel” to the curve Γ . In a special case when the metallic
object is a circular cylinder with radius a , one has

c(s, n) =
1

a+ n
.

The length element dsn on the curve Γn at the point r is related to
the length element ds on the curve Γ at the point rΓ by

dsn = [1 + c(s, 0)n]ds.

Thus one has
∂sn =

1
1 + c(s, 0)n

∂s. (27)

The Laplacian ∆ has the following form in the local coordinate system
(s, n) when the field has no variation along the axis of the cylinder (see
e.g. [9]–[10]):

∆ = ∂2
n + c(s, n)∂n + ∂2

sn . (28)

Now consider a two-dimensional perfectly conducting object (with
boundary Γ ) coated with an inhomogeneous nonlinear thin layer of
a thickness h . Outside the nonlinear thin layer there is a vacuum.
The electric field is assumed to be parallel to the axis of the cylinder.
Then the amplitude E(s, n) of the electric field satisfies the following
nonlinear differential equation (cf. Eq.(1))

∆E + k2
0

[
εr(s, n) + α(s, n)|E|2

]
E = 0. (29)

The boundary condition at n = 0 is

E = 0, n = 0. (30)

Let
τ = n/h, (31)

and introduce the following asymptotic expansion:

E(s, n;h) = E(0)(s, τ) + hE(1)(s, τ) + h2E(2)(s, τ) + . . . . (32)

For small h , the curvature c(s, n) can be expanded as

c(s, hτ) = c(s, 0) + hτc′(s, 0) + . . . , (33)
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where c′(s, 0) = [∂nc(s, n)]n=0 . The tangential derivative in the ex-
pression (28) has the following Taylor ′ s expansion (cf. Eq. (27)):

∂2
sn = ∂2

s −
[
2c(s, 0)τ∂2

s + ∂sc(s, 0)τ∂s
]
h+ . . . .

Thus, substituting the expansion (32) into the differential equation
(29), and matching the coefficients of the h−2, h−1, h0, . . . , terms, re-
spectively, one obtains

∂2
τE

(0) = 0, (34)

∂2
τE

(1) + c(s, 0)∂τE(0) = 0, (35)

∂2
τE

(2) + ∂2
sE

(0) + c(s, 0)∂τE(1) + τc′(s, 0)∂τE(0)

+ k2
0εr(s, τ)E

(0) + k2
0α(s, τ)|E(0)|2E(0) = 0, (36)

. . .

The boundary condition (30) becomes

E(p)(s, 0) = 0, p = 0, 1, 2, . . . (37)

It then follows from Eqs. (34) and (35) that

E(0)(s, τ) = C0(s) τ, (38)

E(1)(s, τ) = −τ
2

2
c(s, 0)C0(s) + C1(s) τ, (39)

where C0(s) and C1(s) are certain functions depending only on the
tangential coordinate s .

Substituting Eqs. (38) and (39) into Eq. (36), yields

∂2
τE

(2) =− k2
0τεr(s, τ)C0 − τ [∂2

sC0(s)− c2(s, 0)C0(s) + c′(s, 0)C0(s)]
− c(s, 0)C1(s)− k2

0α(s, τ)|C0(s)|2C0(s)τ3. (40)

Solving the above differential equation in a way similar to the one that
leads to Eq. (20), one obtains
(
∂τE

(2)
)

(s, 1) = E(2)(s, 1)− 1
3
ω2µ1C0(s)ε̃(s)−

1
3
[∂2
sC0(s)

− c2(s, 0)C0(s) + c′(s, 0)C0(s)]

− 1
2
c(s, 0)C1(s)−

1
5
h2k2

0α̃(s)|E(s, 1)|2E(s, 1). (41)
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where

ε̃(s) = 3
{∫ 1

0
τ1ε(s, τ1) dτ1 −

∫ 1

0

[∫ τ1

0
τ2ε(s, τ2) dτ2

]
dτ1

}
, (42)

α̃(s) = 5
{∫ 1

0
τ3
1α(s, τ1) dτ1 −

∫ 1

0

[∫ τ1

0
τ3
2α(s, τ2) dτ2

]
dτ1

}
. (43)

Combining Eqs. (38), (39) and (41), and following a derivation sim-
ilar to the one that leads to Eq. (24), one can obtains the following
second order approximate boundary condition for the inhomogeneous
nonlinear thin coating:

E − h ∂nE −
1
2
hc(s, 0)E − 1

3
h2k2

0 ε̃r(s)E

− 1
3
h2

[
∂2
sE −

1
4
c2(s, 0)E + c′(s, 0)E

]
− 1

5
h2k2

0α̃(s)|E|2E,

n = h. (44)

4. CONCLUSION

An effective boundary condition for an inhomogeneous nonlinear thin
layer coated on a metallic plane has been derived through an asymp-
totic expansion of the field in power series of the thickness. Numerical
results have shown that the effective boundary condition gives good
accuracy for all incident angles when the coating thickness is much
smaller than the wavelength. The results have been generalized to the
case when the inhomogeneous nonlinear thin layer is coated on a curved
metallic surface. The boundary conditions derived in the present pa-
per can be used effectively to replace an inhomogeneous nonlinear thin
layer coated on a metallic surface. The results can be extended to the
three-dimensional case in a way similar to the one described in [4].

APPENDIX. A NUMERICAL SOLUTION TO A
SCATTERING PROBLEM WITH THE APPROXIMATE
BOUNDARY CONDITION (24)

In this appendix we describe a numerical solution to a scattering prob-
lem with the approximate boundary condition (24) when both ε̃r and
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α̃ are real-valued constants. For an obliquely incident plane wave with
the incidence angle θ , the boundary condition becomes

E − h∂zE −
1
3
h2k2

0(ε̃r − sin2 θ)E − 1
5
h2k2

0α̃|E|2E = 0, z = h. (A1)

At the surface z = h (in the vacuum), the incident and reflected
electric fields have the following expressions [11–12]:

Einc =
1
2

(
E +

√
µ0/ε0Hx/ cos θ

)
,

Erefl =
1
2

(
E −

√
µ0/ε0Hx/ cos θ

)
,

where Hx is the x component of the magnetic field. Thus, one obtains

E = Einc + Erefl, (A2)

∂zE = −iωµ0Hx = −iωµ0 cos θ
√
ε0/µ0

(
Einc − Erefl

)

= −ik0 cos θ
(
Einc − Erefl

)
. (A3)

Substituting Eqs. (A2) and (A3) into Eq. (A1), one obtains

KEinc + K̄Erefl = 0, (A4)

where K is the complex conjugate of K , and

K = 1− 1
3
h2k2

0(ε̃r − sin2 θ)− 1
5
h2k2

0α̃|E|2 + ihk0 cos θ.

Equation (A4) indicates that

∣∣∣∣E
refl

Einc

∣∣∣∣ = 1. (A5)

As in the numerical example given in Section 2, we choose Einc = 1
at z = h . Thus |Erefl| = 1 and the reflection is described by a phase,
i.e.,

Einc = 1, (A6)
Erefl = eiφ, (A7)
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where the phase φ is real-valued. Substituting Eqs. (A6) and (A7)
into Eq. (A1), one obtains the following equation for φ ,

A cos
φ

2
− 4B cos3

φ

2
+ C sin

φ

2
= 0, (A8)

where

A = 1− 1
3
h2k2

0(ε̃r − sin2 θ), (A9)

B =
1
5
h2k2

0α̃, (A10)

C = hk0 cos θ. (A11)

Equation (A8) can be written as

16B2

[
cos2

φ

2

]3

−8AB
[
cos2

φ

2

]2

+(A2+C2)
[
cos2

φ

2

]
−C2 = 0. (A12)

The above cubic algebraic equation for cos2 φ
2 must have at least one

non-negative real root since the product of the three roots equals C2

16B2

(non-negative). If x0 denotes such a non-negative root in the region
[0, 1] , then

cos
φ

2
= ±√x0. (A13)

Choose φ ∈ [0, 2π] , then sin φ
2 ≥ 0 . Since (cf. Eq. (A8))

sin
φ

2
= − 1

C
cos

φ

2

(
A− 4B2 cos2

φ

2

)
, (A14)

the sign in Eq. (A13) is determined by the fact that sin φ
2 is non-

negative. Therefore, one uniquely determines the numerical value of
the phase φ ∈ [0, 2π] for a fixed incident angle θ .
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