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1. INTRODUCTION

Magnetic Resonance Imaging (MRI) is a non-invasive biomedical imag-
ing technique. It is used to obtain high-resolution images of the hu-
man body at any required cross section. Newer techniques have been
adapted to perform volume and flow imaging too. Hence it could be
considered a comprehensive imaging method. It is considered to be
the safest and most efficient of contemporary imaging methods. The
underlying principle is based on nuclear magnetic resonance. The sig-
nals used in the excitation and the signals obtained from this process
are electromagnetic in nature [1, 2]. By appropriate signal process-
ing, images are formed from these signals. Hence there is impetus to
look at the present signal model and see whether this could be refined
in any manner to yield better understanding of the intensity inhomo-
geneity artifact found in the images formed. The basic mechanism
of magnetic resonance and the electromagnetic fields created by the
nuclei have been looked into from a new perspective and the image
results are presented. Emphasis is on analyzing the effects of the near
electromagnetic fields on the synthesized MRI images.
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In section 2, the basics of the nuclear resonance phenomenon and
magnetic resonance imaging techniques are presented. In section 3 the
equation of motion of resonating atomic nuclei is presented mathemat-
ically and the magnetic moment in the imaging plane under consid-
eration is reformulated as a combination of two orthogonal magnetic
moments that are 90◦ out of phase. It is then possible to analyze the
near-field electromagnetic fields due to these magnetic moments more
closely using the established field equations. Following the derivation of
temporal return signals in MRI, section 4 looks at the effect of the near
electromagnetic fields on the magnetic resonance images. The effect
of the two factors introduced in part I, namely Magnitude Modifying
Factor (MMF) and Phase Modifying Factor (PMF), on the magnetic
resonance images is studied. In section 5 is presented a correction al-
gorithm that removes the intensity inhomogeneity artifact and image
blurring due to the MMF and PMF respectively. Some useful conclu-
sions are drawn in section 6.

2. BASICS OF MRI

2.1 Nuclear Precession

The human body is predominantly composed of hydrogen atoms.
This is because the main constituent of the human body is water. The
hydrogen nucleus has a positive charge located at some distance away
from the center but still within the volume of the nucleus. Further,
the hydrogen nucleus is spinning about an axis with an unknown rate
of rotation and it does not slowdown due to friction or for any other
reason. Thus as the nucleus spins, the positive charge revolves in an
approximately circular path much as an electron in a loop or wire.
This movement of the positive charge produces a magnetic field and
thus a magnet of microscopic scale is created. When this nucleus is
subjected to a constant magnetic field B it tends to align with this
field. However as the nucleus itself is spinning it wobbles too. This
wobbling motion is called precession. This precession has a fixed fre-
quency, being proportional to the strength of the applied magnetic field
and the fixed frequency is called the Larmor frequency of the nucleus.
The Larmor frequency will be the natural frequency of the nucleus at
the particular applied magnetic field strength. This motion is similar
to the motion of a spinning top which wobbles due to the earth’s gravi-
tational field. The relationship between the applied magnetic field and
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the frequency of precession, a relationship which is central to MRI, is
given by [1]

ωo = −γHo (2.1)

The precessionary motion of the macroscopic magnetic dipole M is
shown in Fig. 2.1.

Figure 2.1 Precessionary motion.

In addition to the external magnetic field Bo a nucleus will expe-
rience small additional fields generated by neighbouring current loops,
which may be intramolecular or intermolecular in nature. Because the
molecules tumble and exhibit rapid and random motion, the total mag-
netic field experienced by each molecule fluctuates. These fluctuations
can be considered to be parallel or perpendicular to Bo.

2.2 Longitudinal Relaxation

In trying to bring the nuclear magnet into alignment with the ap-
plied magnetic field Bo the energy of the molecule is reduced (the
energy steady state) whereas increase in non-alignment increases its
energy. As reaction and action are equal and opposite, there is with
the flipping of each nuclear spin an exchange of energy with the adja-
cent molecules. Thus when alignment takes place a minute quantity of
energy is passed to the adjacent molecules and their motion minutely
increases. This is called spin-lattice interaction. The kinetic energy is
removed by this mechanism and bulk magnetization is built as shown
in Fig. 2.2. The time constant associated with this mechanism is called
Longitudinal Relaxation time (T1). It has been found that the bulk
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Figure 2.2 Nuclear magnetization.

magnetization built up is proportional to the applied magnetic field
Bo [1].

2.3 Nuclear Magnetic Resonance

The nucleus precesses at the Larmor frequency. Hence it is possible
to elicit a response using resonance principles by applying a stimulus
having approximately the Larmor frequency. The stimulus employed in
MRI is an additional magnetic field B1 that rotates about B0 close to
the Larmor frequency. This causes the magnetization to precess about
B1 and induce a signal in a suitably placed coil. This is called Nuclear
Magnetic Resonance (NMR) [1].

2.4 Rotating Frame

The conventional Cartesian framework (x, y, z) is shown in Fig. 2.1.
The magnetic field Bo was placed in the z direction. Thus precession
takes place in the xy plane and equilibrium magnetization M set-
tles along the z-axis. For mathematical manipulation, another frame
(x′, y′, z′) which rotates about the z axis in the same direction as the
precession is considered and observations are made with reference to
this plane. This is called the rotating frame of reference.

When rotation equals the Larmor frequency the precession seems to
have stopped with reference to the new frame. Hence in the rotating
frame of reference there is no effect of the magnetic field B0. An
additional magnetic field B1 which rotates about B0 at the Larmor
frequency will be stationary in the rotating frame [3]. If the B1 field is
placed along the −y′ axis as shown in Fig. 2.3, M precesses about B1.
Depending on the duration the excitation was applied M will settle on
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the x′y′ plane along the x′ axis as shown in Fig. 2.3. This sequence
is called 90◦ excitation. There are other excitation sequences as well,
used to impress parameters such as relaxation time, magnetization
density or a combination of these on the return resonant signals.

Figure 2.3 A 90◦ excitation magnetization.

The above explanation is true when there is resonance between B1

and the rotating frame. Under off-resonance condition there will be
relative precession between the rotating frame and B1. This precession
could be modeled as due to an additional magnetic field ∆Bo in the
z′ direction. Thus the magnetization will precess under the influence
of an effective field B1eff that is the vector sum of B1 and ∆Bo as
shown in Fig. 2.4 [1].

Figure 2.4 Precession under effective magnetic field.



Dipole model for radar and medical imaging 233

If the stimulus is badly in error with the Larmor frequency, the
resultant will be largely elevated or depressed from the x′y′ plane and
cannot be detected. Thus significant signal is only obtained when the
frequency of the stimulus is the same or nearly the same as the natural
frequency of the magnetic resonance system.

2.5 Transverse Relaxation

The magnetic resonance signal induced in a coil will be as shown in
Fig. 2.5. The signal decays as shown by a process termed transverse
relaxation to indicate the decaying of magnetization which is transverse
to the applied magnetic field. The transverse relaxation time constant
T2 is usually less than longitudinal relaxation time constant T1 [1].
This mechanism is due to the interaction between close nuclei.

Figure 2.5 Magnetic resonance signal.

2.6 Imaging Techniques

2.6.1 Back Projection Imaging

From (2.1) it is seen that the resonant frequency in any region is
dependent on the applied magnetic field strength. If a gradient mag-
netic field is applied, the region to be image will be frequency coded
in the following form [3]

ω(x) = γ(Bo + xG) = ωo + γxG (2.2)



234 Naveendra and Hoole

An extension of this concept is used in back projection imaging. A one-
dimensional field gradient is applied at several angles, and the nuclear
magnetic resonance (NMR) spectrum is recorded for each direction.
The direction of the gradient G is changed by using a combination of
gradient fields Gx and Gy as

Gy = G sin θ
Gx = G cos θ 0 ≤ θ < π (2.3)

Gradient Gz is used to select the slice of interest in the z direction.
The collected data can be back projected to form the image. This

was the first MRI method to be demonstrated [1]. But the back pro-
jection method is not commonly used because the non-linearity of the
gradient field causes image blurring [3]. This principle has been ex-
tended to form another imaging method called Fourier Imaging.

2.6.2 Fourier Imaging

In Fourier imaging a phase encoding gradient Gφ is introduced in
addition to the slice selection and frequency encoding gradients. The
phase encoding gradient is applied in a direction perpendicular to both
the frequency encoding and slice selection gradients and it is used to
impart a specific phase angle dependent on the location, to a transverse
magnetization vector [3, 4].

When the slice selection gradient is turned on, all the radiating re-
gions in a slice will have the same radio frequency. But when the phase
encoding gradient is turned on, the resonant frequency will change in
the direction of the phase encoding gradient. When it is turned off
all regions will have the same frequency but different phase. Then the
signals are obtained when the frequency encoding gradient is applied.
Thus the regions are effectively encoded in phase and frequency in or-
thogonal directions. This sequence of pulses is repeated 128 or 256
times with different phase encoding gradient values, to collect all the
data needed to produce an image depending on whether the image is
to be created to a resolution of 1/128 or 1/256 of sample dimension
[4].

The collected raw data is a complex signal matrix Ski = S(ti, gk),
where gk and ti are chosen to be equi-spaced in the intervals [−Gφ,
Gφ] and [−T, T ] respectively [3]. where

gk =
(

2Gφ

n

)
k; k = −1

2
n,−1

2
n + 1, . . . . . .

1
2
n− 1 (2.4)
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ti =
(

2T
m

)
i; i = −1

2
m,−1

2
m + 1, . . . . . .

1
2
m− 1 (2.5)

A two dimensional Discrete Fourier Transform (2DFT) of the raw data
will yield the final image matrix Isr [3, 4].

Isr =

∣∣∣∣∣∣
m/2−1∑
i=−m/2

n/2−1∑
k=−n/2

skj exp 2πj
( r

m
i +

s

n
k
)∣∣∣∣∣∣ (2.6)

The image matrix Isr represents a truncated version of the radiating
region intensity distribution function ρ(xr, ys, z) [3]. where,

xr =
(

2X
m

)
r, ys =

(
2Y
n

)
s (2.7)

and 2X, 2Y are dimensions of the sample in the x and y directions
respectively.

The 2DFT is implemented as two one dimensional transforms, first
in the frequency encoding direction and then the phase encoding di-
rection.

The ability to perform imaging very fast is limited by the number
of increments through which the phase encoding gradient has to be
stepped, as this defines image resolution. But this method is not use-
ful for fast imaging. There have been attempts at reducing the imaging
time by using short acquisition time with correction for the induced
artifacts [5–7]. There have also been attempts at using Wavelet tech-
niques for image reconstruction [8–10]. Different excitation techniques
are suited for specific applications but brings additional image arti-
facts. But image intensity artifact is common to all the excitation
techniques and should be removed for better image quality [11]. Image
intensity artifact is caused by static magnetic field inhomogeneity [12,
13], bias field [14], susceptibility change [15], and relative motion be-
tween image organ and MR system [16]. The image intensity artifact
makes the image useless for statistical studies, automatic segmentation
and image classification [4]. Hence it is important that the intensity
artifact be removed, whatever the inducing factor may be.

Our work involving the MMF and PMF, introduced in part-I of
this transaction, sheds light on another mode through which image
intensity artifact could be introduced in a MR image. To handle this
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problem, the MR signals should be modeled accurately to include the
near electromagnetic fields.

3. NEAR ELECTROMAGNETIC FIELDS IN MRI
TECHNOLOGY

The signals involved in MRI are electromagnetic in nature and the coils
designed to act as transceivers are in fact designed to accommodate the
energy in the near electromagnetic fields [4]. Since the magnitude and
phase of the near electromagnetic fields are dependent on distance,
the MR temporal signals should be redefined in terms of the near
electromagnetic fields.

3.1 Bloch Equations

An atomic nucleus has it’s own intrinsic angular momentum vector
S, called spin, associated with a unique quantum number I ≡ {1/2(j−
1); j = 1, 2, 3 . . .}. A nucleus with I �= 0, has it’s own intrinsic nuclear
magnetic moment m, related to S by [1]

m = γ.S (3.1)

where γ is called the gyromagnetic ratio and it depends on the type
of nuclei.

In the presence of an external magnetic field Bk, the magnetic
moment of the nucleus will experience a torque that is equal to the
rate of change of the angular momentum. Hence

dm

dt
= γm×B (3.2)

But (3.2) has been obtained ignoring the interactions of the nuclei
with the surrounding molecular environment (spin-lattice interaction)
and those between close nuclei (spin-spin interaction). Therefore (3.2)
must be modified to properly represent the macroscopic behavior of
the physical system. The modifications were proposed by Bloch and is
based on the following observations [3]:

i. The changes in the spins’ total energy density E are only due to
spin-lattice interaction, while spin-spin interaction does not involve
changes in E. Since the dominant term of E(t) is m(t) · H0(t),
the spin-lattice interaction will contribute to the changes of mz(t).
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Thus it is clear that mz(t) approaches the equilibrium value M0

exponentially with a time constant T1 called longitudinal or spin-
lattice relaxation time, so that the rate of change of m(t) due to
spin-lattice interaction will be − [m(t)−M0] /T1.

ii. Spin-spin interaction does not influence E. Hence it will not be in-
volved in the changes of mz(t). But it will effect mx(t) and my(t).
Therefore the transversal components mx(t) and my(t) of m(t)
will decrease to zero exponentially with a time constant T2 called
transversal or spin-spin relaxation time. The rates of change of
mx(t) and my(t) are −mx(t)/T2 and −my(t)/T2 respectively.

The effect of decay of mx(t) and my(t) due to spin-spin relaxation is
stronger when the mobility of the nuclei decreases. This is the reason
why the T2 values of solids are smaller than those of liquids. Hence
the transient MR signals from solids are reduced to zero much faster
than those from liquids. In the MRI image solids do not appear or
appear at the color code denoting the least strength. Hence the skull
will appear as a dark region in a MR image whereas it will appear
bright in a CT scan [2].

In order to take into account the perturbation due to spin-lattice
and spin-spin interaction, the decay rates are applied to (3.2) and could
be written component wise as [3]:

dmx

dt
= γ [myHz −mzHy]−

mx

T2

dmy

dt
= γ [mzHx −mxHz]−

my

T2

dmz

dt
= γ [mxHy −myHx]−

mz −M0

T1

(3.3)

These equations are basic in MR experiments and called Bloch equa-
tions [3].

The solutions for (3.3) in the stationary plane are [3]:

mx(x, t) = [mx(x, 0) cos θ(x, t)−my(x, 0) sin θ(x, t)] exp
(
− t

T2(x)

)
]

(3.4.1)

my(x, t) = [mx(x, 0) sin θ(x, t) + my(x, 0) cos θ(x, t)] exp
(
− t

T2(x)

)
(3.4.2)
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mz(x, t) = mz(x, 0)− [mz(x, 0)−M0(x)]
[
1− exp

(
− t

T1(x)

)]
(3.4.3)

Equations (3.4.1) and (3.4.2) can be written as

mx(x, t) = |mxy(x, 0)| exp
(
− t

T2(x)

)
cos [θ(x, t) + ψ(x)] (3.5.1)

my(x, t) = |mxy(x, 0)| exp
(
− t

T2(x)

)
sin [θ(x, t) + ψ(x)] (3.5.2)

where mxy(x, t) ≡ [mx(x, t),my(x, t), 0] is the projection of m(x, t) on
the xy plane and ψ(x) = my(x, 0)/mx(x, 0). From (3.5.1) and (3.5.2)
it is seen that m(x, t) rotates around k with an angular velocity of
ω(x, t) = −γH(x, t) (Larmor frequency) and its’ projection on the xy
plane decreases with a time constant T2. From (3.4.3) it is seen that
the k projection of m(x, t) approaches exponentially the value M0(x)
with time constant T1.

3.2 Electromagnetic Fields due to the Resonating Nuclear
Magnetic Moment

In conventional Magnetic Resonance signal analysis, the time do-
main signal expressions are obtained in terms of the net magnetiza-
tion moment and no study has been carried out on the fields created
by these magnetic moments. In analyzing the signals, the effect of
the electromagnetic fields, it’s interaction with the sensing coil and
especially the effect of the near electromagnetic fields have not been
studied.

The rotating magnetic moment in the xy-plane could be modeled
by two magnetic moments that are in phase quadrature and acting
along the x and y-axes. These two magnetic moments could be rep-
resented by (3.5.1) and (3.5.2) respectively. The geometrical setup of
the magnetic moments is shown in Fig. 3.1.

In order to find the electric and magnetic fields due to the rotating
magnetic moment, the rotating magnetic moment is replaced by two
magnetic moments in the x, y directions that are in phase quadra-
ture. This will create a rotating magnetic moment in the xy plane.
The fields due to magnetic moments in the x, y directions are found
separately and added in the time domain vectorially to arrive at the
resultant electromagnetic fields.
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Figure 3.1 Geometrical placement of the magnetic moments.

The magnetic moment m is related to the hypothetical magnetic
current Im given by [17, 18]

m = Iml (3.6)

where l is the length of the magnetic dipole. Also the magnetic field
components Hr and Hθ of a magnetic dipole of length l could be
written as [17]

Hr =
Iml cos θ
2πηr2

[
1 +

1
jkr

]
e−jkr (3.7)

Hθ = j
kIml sin θ

4πηr

[
1 +

1
jkr
− 1

(kr)2

]
e−jkr (3.8)

3.2.1 Magnetic Fields due to the Magnetic Moment Along the x axis

Substituting for magnetic moment Iml using (3.5.1), the magnetic
field components due to mx(t) is found to be

HrX(t) =
mxye

−t/T2

2πη
cos θ
r2

[
1 +

1
jkr

]
cos [ω0t + ψ(x)− kr] (3.9)

HθX(t) =
kmxye

−t/T2

4πη
sin θ
r

[
1 +

1
jkr
− 1

(kr)2

]
sin [ω0t + ψ(x)− kr]

(3.10)
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Figure 3.2 Magnetic field components due to the two magnetic mo-
ments.

3.2.2 Magnetic Fields due to the Magnetic Moments Along the y axis

Substituting for magnetic moment Iml using (3.5.2), the magnetic
field components due to my(t) are found to be:

HrY =
mxye

−t/T2

2πη
cos(90◦ − θ)

r2

[
1 +

1
jkr

]
sin [ω0t + ψ(x)− kr]

which reduces to

HrY =
mxye

−t/T2

2πη
sin θ
r2

[
1 +

1
jkr

]
sin [ω0t + ψ(x)− kr] (3.11)

The θ component of the magnetic field is given by

HθY (t) = −j kmxye
−t/T2

4πη
sin(90◦ − θ)

r

[
1 +

1
jkr
− 1

(kr)2

]
sin [ω0t + ψ(x)− kr]

which reduces to

HθY (t) = −kmxye
−t/T2

4πη
cos θ
r

[
1 +

1
jkr
− 1

(kr)2

]
cos [ω0t + ψ(x)− kr] (3.12)
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3.2.3 Resultant Magnetic Fields at P (r, θ)

The resultant magnetic field components at an observation point
P (r, θ) are found by the vector sum of the individual components, and
may be expressed as

HR(t) = HrX(t) + HrY (t) (3.13)
Hθ(t) = HθX(t)−HθY (t) (3.14)

Substituting (3.9) and (3.11) into (3.13), we get

HR =
m

2πη
e−t/T2

r2

[
1 +

1
jkr

]
{cos θ cos [ω0t + ψ(x)− kr]

+ sin θ sin [ω0t + ψ(x)− kr]}

which reduces to

HR =
m

2πη
e−t/T2

r2

[
1 +

1
jkr

]
cos [ω0t + ψ(x)− kr − θ]

(3.15)

Substituting (3.10) and (3.12) into (3.14), we get

Hθ(t) =
km

4πη
e−t/T2

r

[
1 +

1
jkr
− 1

(kr)2

]
{cos θ cos [ω0t + ψ(x)− kr]

− sin θ sin [ω0t + ψ(x)− kr]}

which reduces to

Hθ(t) =
km

4πη
e−t/T2

r

[
1 +

1
jkr
− 1

(kr)2

]
cos [ω0t + ψ(x)− kr + θ]

(3.16)
Equations (3.15) and (3.16) gives the resultant magnetic field compo-
nents in the radial and tangential directions on the xy plane respec-
tively.

3.3 Magnetic Resonance Time Domain Signal

There exists a changing magnetic field near a sample excited by an
external magnetic field H as seen from (3.15) and (3.16). Thus, a
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coil placed near the sample with its axis on the xy plane will detect
a voltage induced in it by electromagnetic induction. This is the only
measurable quantity in a MR experiment and image reconstruction is
done using these measurements.

To find the voltage induced in a coil, it is necessary to find the flux
linkage in the coil due to the magnetic field. The flux linkage φn is
defined as

φn = B ·A = µH ·A (3.17)

where A is the area of the coil and uniform flux distribution over the
coil area is assumed. When the coil is placed in a position to pick up
only the radial component of the magnetic field, (3.17) becomes

φn = µHRA

assuming that the magnetic field HR is uniform within the area A
of the coil. The induced voltage or current in the coil is the time
derivative of the flux linkage through the coil [18]. Hence the current
is given by

i(t) = −Cdφn
dt

for t ≥ td

i(t) = −CµmA

2πη
1
r2

[
1 +

1
jkr

]
d

dt

{
e−t/T2 cos [ω0t + ψ(x)− kr − θ]

}

= −CµmA

2πη
FR(r)

d

dt

{
e−t/T2 cos [ω0t + ψ(x)− kr − θ + α(r)]

}

where

FR(r) =

√
1
r4

+
1

k2r6
(3.18)

α(r) = tan−1

(
− 1
kr

)
(3.19)

i(t) = −CµmA

2πη
e−t/T2FR(r)

{
− ω0 sin [ω0t + ψ(x)− kr − θ + α(r)]

− 1
T2

cos [ω0t + ψ(x)− kr − θ + α(r)]
}

(3.20)
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Note that η =
√

µ
ε , ν = 1√

µε and wave-number k = ω0
ν Substituting

for these parameters, (3.20) becomes

i(t) = −CmAFR(r)
2π

e−t/T2

{−k sin [ω0t + ψ(x)− kr − θ + α(r)]

− 1
νT2

cos [ω0t + ψ(x)− kr − θ + α(r)]

}

(3.21)
Here ν is in the order of 108 and T2 in the order of 10−3 [1]. In
comparison to the first term of (3.21), the second term will be negligibly
small. Thus (3.21) simplifies to,

i(t) ≈ C
km

2π
FR(r)e−t/T2 sin [ω0t + ψ(x)− kr − θ + α(r)] (3.22)

Considering the time delay td in the signal reaching the receiver, (3.22)
could be re-written as,

i(t) =C
km

2π
FR(r)e−t−td/T2

· sin [ω0(t− td) + ψ(x)− θ + α(r)]u(t− td) (3.23)

where the time delay td is defined as td = r
ν and u(t) denotes the

step function.

3.3.1 Ensemble of Signals from Radiating Regions

A sample under test will have numerous radiating regions. But
to show peculiar effects due to the individual radiating regions, the
ensemble of signals obtained is modeled as a discrete summation. The
signals thus obtained may be expressed as

x(t) = C
km

2π

∑
i

FR(ri)e−t−tdi/T2 sin [2πf0(t− tdi)

+ψ(x)− θ(i) + α(ri)]u(t− tdi) (3.24)

where FR(ri) is the MMF, which depends on the distance between the
radiating region i and the receiver; tdi is the time delay in the signal
reaching the receiver; ψ(x) is a constant phase; θ(i) is a phase angle
depending on the placement of the receiver coil; α(ri) is a distance
dependent phase term due to the complex nature of the near fields and
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u(t) is a step function. The integer i will vary over the number of
radiating regions.

In MR experiments, signals are obtained using frequency and phase
encoding field gradients, in which case the signal described in (3.24)
should be modified to include different frequencies and phase. Thus
(3.24) becomes

x(t) = C
km

2π

∑
i

∑
j

FR(ri)e−t−tdi/T2 sin [2πfi(t− tdi)

+ψ(x)− θ(i) + α(ri) + φj ]u(t− tdi) (3.25)

where φj is the phase angle due to the phase encoding gradient. Thus,
the signal of (3.25) is encoded in frequency and phase. The frequency
fi and phase φj are defined as

fi = f0 + gf i = f0 + ∆f (3.26)
φj = gpj (3.27)

where gf , gp are the frequency and phase encoding gradients respec-
tively and i, j are aliases for distance used here in a discrete sense and
span over the number of frequency and phase encoding steps.

For illustrative purposes, nine discrete radiating regions are selected
on a square, as shown in Fig. 3.3. This set up has been selected to
study the effects of the frequency and phase encoding gradients on the
near-field MRI signals and also to show the effect due to the MMF in
modulating the signal strength from region to region.

Figure 3.3 Radiating regions under study.
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The receiving coil is placed perpendicular to the x-axis. This set
up simplifies the calculations.

The radiating regions are assumed to be resonating at 100 MHz,
corresponding to γ = 50 × 106 at a field strength of 2 Tesla. These
signals are stepped down in frequency by coherent quadrature demod-
ulation which enables the phase information to be retrieved. For this
purpose, the local oscillator frequency was assumed to be 99.5 MHz.
Thus, the center frequency is 0.5 MHz (500 kHz). The relaxation
time constant T2 was assumed to be 0.003 s, a realistic value closely
matching a practical situation [1]. The other phase angle α(r) is cal-
culated from (3.19). The magnetization density m is assumed to be
4 · 4× 10−3 Am−2. When a field gradient (gf ) of 1mT/cm is applied,
the corresponding change in frequency can be calculated from

∆f =
γ · gf
2π

(3.28)

Substituting the values of γ and gf , we get ∆f ≈ 8750 Hz/cm. Sim-
ilarly, phase gradient of 3 · 75◦/cm is assumed. Thus for the radiating
regions considered, the frequency difference between regions (1, 4, 7),
(2, 5, 8) and (3, 6, 9) in Fig. 3.3 will be

∆f = 8750× 10
= 87.5 kHz

The relative phase difference between regions (1, 2, 3), (4, 5, 6) and
(7, 8, 9) will be

∆φ = 3 · 75× 10
= 37 · 5◦

The signals from the different regions are shown in Fig. 3.4.
In Fig. 3.4, the signals in each column have identical frequency and

it is progressively increasing from left to right column. This is due to
a positive frequency-encoding field gradient in the x-direction. The
starting phases of the signals in a row are approximately identical.
This is because the phase-encoding field gradient is applied in the y-
direction and it does not affect the signal phase in the x-direction. The
small perturbations are due to the additional phase quantities defined
in (3.25). This includes the distant dependent PMF too. It is seen that
the amplitude of the signal from region-6 determines the magnitude of
the resultant signal.



246 Naveendra and Hoole

Figure 3.4 Magnetic resonance signals.

The nine regions were assigned equal radiating strengths i.e. equal
magnetization density. Hence the initial amplitude of the received
signal has to be equal. But as seen from Fig. 3.4, it is not. This is
due to the effect of the MMF, FR(r). Depending on the distance
between the coil and the radiating regions, the amplitude of the signal
is changed. The variation of the MMF and PMF with distance is shown
in Fig. 3.5 and Fig. 3.6, respectively.

As demonstrated in Fig. 3.5, the factor FR(r) varies rapidly and
is large when the distance r is small. Hence the amplitude of the
signal from region-6, which is the closest to the coil, is the largest.
The difference in the signal amplitude from different regions could be
as large as 14 dB. From Fig. 3.6 it is seen that the variation of the
PMF due to Hr does not change rapidly with distance. Hence for the
nine radiating regions of Fig. 3.3, there will be negligible variation in
phase introduced due to the PMF. In the more complete signal model
proposed in (3.25), it is possible to account for the additional phase
and amplitude perturbations due to the near-field phenomena.
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Figure 3.5 Variation of magnitude Figure 3.6 Variation of the
modifying factor. phase modifying factor.

4. MAGNETIC RESONANCE IMAGE RESULTS

In order to see the effects of the additional phase and amplitude mod-
ulation factors on image synthesis, the nine radiating regions shown in
Fig. 3.3 are imaged using Fourier imaging techniques. We ignore the ef-
fects of the complex impedance of the different materials present in the
human body and the interaction of these materials with the resonating
magnetic dipoles. The complex impedance of the bio-materials and
the net effect due to the interactions can be considered as a random
phase noise and compensated for [19]. The simplified signal model that
ignores this random phase noise is used to illustrate the effects due to
the near EM fields in MRI.

4.1 Hr based Image

The image of the nine radiating regions when the signal is modified
by the MMF of the radial magnetic field component is shown in Fig. 4.1.
Although the intensities of the nine regions should be equal as per the
assigned magnetization density values, they are not identical in the
image.

The relative image intensity of regions 1 to 9 from Fig. 4.1 is 1 :
1.71 : 4 : 1.14 : 2 : 5.43 : 1 : 1.71 : 4. The relative error in image
intensity is as large as 9 dB between the extreme values. This will
render the image unreliable for statistical studies, segmentation and
classification.
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Figure 4.1 Perspective view of Hr based image.
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Figure 4.2 Perspective view of Hθ based image.
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4.2 Hθ based Image

Fig. 4.2 shows the Hθ based image of the nine regions described in
Fig. 6.3. The relative image intensities of regions 1 to 9 are 1 : 1.3 :
2.24 : 1.05 : 1.38 : 2.95 : 1 : 1.3 : 2.24 respectively. The maximum
image intensity error is small when compared with that for the Hr

based image. The maximum relative error was calculated to be less
than 5 dB. Hence it is seen that the images obtained with Hθ based
signals are better than that obtained with Hr signals.

4.3 Image due to Circularly Polarized Signals

In the near field region of the electromagnetic signals, two orthog-
onal magnetic fields Hr and Hθ are present. In MRI technology the
receiving coils are usually placed in the near field region. Hence the
resultant received signals are circularly polarized. If the receiver is
capable of picking up the circularly polarized signal, which is the cur-
rent MRI practice, the MR signal magnitude will be modified by the
resultant MMF defined by

F (r) =
√
F 2
r + F 2

θ (4.1)

The image obtained for the nine-region test case with such a circularly
polarized signal is shown in Fig. 4.3. The relative image intensity ratio
for regions 1 to 9 is 1 : 1.7 : 3.75 : 1.10 : 1.95 : 5 : 1 : 1.7 : 3.75.
The maximum deviation in intensity is 7.2 dB. It is apparent that the
reconstructed image resembles the image from Hr.

In all the three cases considered using Hr, Hθ or
√
H2
r + H2

θ the
images do not represent the information accurately. Based on the
simulation and theoretical studies carried out, it is established that
the images obtained through imaging routines currently in use do not
convey the information accurately. The image misrepresentation due
to near-field effects can be classified as image intensity inhomogene-
ity. This error has been unaccounted for because the incompleteness
of the underlying signal model used in current MRI machines and its
implications to the imaging routine have not been studied. Although
image intensity inhomogeneity due to the external magnetic field in-
homogeneity has been analyzed and correction measures proposed in
[20, 21] the near field effects have been ignored.

Since a more complete signal model has been proposed in this pa-
per, it is possible to account for this additional error in intensity and
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perform a correction for the image intensity inhomogeneity. This pro-
cedure is explained in the next section.

5. CORRECTION FOR INTENSITY INHOMOGENEITY
ARTIFACT

5.1 Correction for Phase Modifying Factor

Erroneous phase information will distort the image geometry and
intensity. The radiating regions in an image will be misregistered in
position, modulated in intensity and scaled in size. It has been noted
that the phase information is corrupted due to inhomogeneity in the B1

field and due to the susceptibility change near bone-tissue and tissue-
air interfaces. A variety of correction procedures have been proposed.
In [15], a set of reference scans has been obtained with homogenous
material as subject and the correct phase information thus derived has
been utilized to correct the distorted phase information in the actual
routine. Images obtained through this procedure are seen to be sat-
isfactory. But the distant dependent phase information has not been
removed by this procedure and will distort the image. Phase can be
corrupted through coil imperfection and alterations to its nominal po-
sition with respect to the patient [14]. This image distortion has been
termed as coil effect and attributed to a bias field. Although this effect
can be ignored for qualitative analysis, it is important for automated
image segmentation activity. The bias field has been estimated and
corrected using phantom images [11] and polynomial fitting [12]. But
these methods are based on assuming that the corrupting effects are
patient independent, which is not correct. It has been found that the
correction should be done retrospectively and also that post-filtering is
better than pre-filtering [14]. Our approach in correcting for the phase
and magnitude modifying factors are post processing steps and thus
highly suitable for this problem. In addition, image artifacts are cre-
ated through phase distortion due to static field inhomogeneity [13],
relative motion of patient [16] and N/2 ghost artifact due to non-
optimum data acquisition system performance [22].

The variation of PMF due to Hr and Hθ with distance, as shown
in Fig. 3.6, is not rapid. As such, the phase variation between signals
from adjacent regions is not marked. Thus there is imperceptible in-
tensity and mis-positioning differences in the images obtained. The
image domain data in this thesis have not been corrected for phase
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Figure 5.1 Schematic diagram of correction process.

perturbations but corrected for the more notable changes in intensity
due to the MMF. If phase correction is to be incorporated, the correc-
tion for PMF should be performed before the correction for MMF, as
detailed in [15].

5.2 Correction Algorithm for Magnitude Modifying Factor

The knowledge of the underlying near field MR signal enables a
correction procedure to be incorporated in the imaging routine. This
procedure is to operate on the distorted image and the algorithm is
shown schematically in Fig. 5.1. The procedure could be explained as
follows:
• The image is formed using Fourier imaging technique, as shown in

the upper first two blocks in Fig. 5.1.
• The imaging routine determines the resolution and the field of view.

Hence the parameters m,n and X,Y are known, where m,n are
the number of points processed in the x, y directions respectively;
X,Y are the object dimension in the x, y directions respectively
with reference to Fig. 3.3. These data are fed to the MMF black
box.

• The orientation and distance of the coil with respect to the fixed axis
system, as shown in Fig. 3.3 are also fed to the MMF black box.
The orientation could be detected by the signal pickup electronic
system. The distance is usually a fixed parameter. Depending on
coil orientation, an appropriate signal model is chosen.

• The MMF is computed and fed to the post processor, which incor-
porates this factor to correct the distorted image. The end result is
the corrected image.
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Figure 5.2 MMF block.

The MMF and post processor blocks are discussed in sections 5.2.1
and 5.2.2 respectively.

5.2.1 MMF Block

The input parameters and the function of the MMF block could be
further detailed as shown in Fig. 5.2. Depending on the orientation
of the pickup coil, the receiver picks up the Hr, Hθ or the circularly
polarized resultant signal. When the coil receives the Hr component,
there will be contribution from the Hθ component as well. Hence
the usual signal to be used in processing is that due to the resultant
and it is evident from image results and analysis of the MMF that the
resultant factor follows the response of Hr. Hence the coil orientation
should be selected correctly for optimum performance.

The field of view parameter gives the values of X and Y. Further,
the number of points used for the 2DFT operation (m,n) are known
since it is set by the operator. The calculation is done using (2.7), and
repeated here for convenience:

xp =
(

2X
m

)
p yp =

(
2Y
n

)
q

where p, q are the parameters of the image domain data I(p, q). The
distance to the radiating region from the receiver is calculated from

rpq =
√

(d− xp)2 + y2
q (5.1)

where d is the distance of the coil-center from the origin of the axis
system. Once the distance is known the corresponding factor could be
calculated for each point on the image. Thus the output of the MMF
block is a spatial filter S(p, q).
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Figure 5.3 Spatial filter of order 128× 128 for field of view of 20×
20 cm.

To reduce the computational effort, the image could be segmented
and the filter coefficients computed for only a fraction of the total
number of image pixels. This is feasible since there will not be abrupt
intensity changes within a few pixels in the image. Also the circular
symmetry of the problem (if applicable) could be used to halve the
number of points required for distance calculation. Hence for a 128×
128 order filter, calculations on 64×64 points are sufficient. The filter
coefficients could be saved on computer disk and need not be computed
every time.

The spatial filter is given by

S(p, q) = 1/F (rpq) (5.2)

Such a filter response is shown in Fig. 5.3. Here the field of view
and the number of points for resolution calculation were taken to be
20× 20 cm and 128× 128 respectively.

Equal coefficients are shown with the same color on the graph. The
color changes gradually signifying the fact that the coefficients do not
change rapidly. Also the filter coefficients are symmetrical about the x-
axis. Due to this property of symmetry, the computational requirement
could be reduced by half as mentioned earlier.
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5.2.2 Post Processing Block

The corrected image domain data I ′(p, q) could be obtained by the
following operation:

I ′(p, q) = I(p, q) ·S(p, q); p, q : −1
2
N,−1

2
N + 1, . . . . . .

1
2
N − 1 (5.3)

where the order of the spatial filter is identical to that of the image
domain dimension N. When a reduction factor R is used on the order
of the filter, the operation could be defined by

I ′(p, q) = I
( p

R
,
q

R

)
· S(a, b); ceiling(p/R, q/R) : 1, 2, . . . . . . N/R

a, b : 1, 2, . . . . . . . . . N/R (5.4)

where ceiling gives the nearest upper integer value. The resolution
afforded by the corrected image depends on the order of the spatial
filter.

5.3 Corrected Image

The distorted image of Fig. 4.3 was filtered by the MMF filter and
the resultant image is shown in Fig. 5.4. The nine radiating regions
shown in Fig. 5.4 have equal radiating strengths after the filtering pro-
cess. This image is more useful for clinical diagnosis and statistical
studies since the image of Fig. 5.4 does not have the intensity inhomo-
geneity artifact.

6. CONCLUSIONS

It has been demonstrated that the resonating atomic nuclei in the hu-
man body can be modeled by a collection of infinitesimal magnetic
dipoles. This allows for the proper modeling of the magnetic reso-
nance signals by incorporating the hitherto unaccounted near electro-
magnetic fields. Two new factors, namely Magnitude Modifying Factor
and Phase Modifying Factor, have been introduced. It is shown that
the current MR images contain residual intensity artifact due to the
MMF and PMF. Using the more accurate signal model proposed, a
revised imaging algorithm is presented that alleviates the inherent in-
tensity artifact found in MR images.
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Figure 5.4 Corrected MR image of nine radiating regions.
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