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1. INTRODUCTION

A large number of structures in the field of electromagnetics present
symmetry around an axis of rotation. Among these structures there
are certain types of transmission media, such as coaxial cables and
cylindrical waveguides; and antennas, like wire dipoles, circular mi-
crostrip patches, cylindrical dielectric, and resonator antennas. There
are also structures that have this rotational symmetry, on to which
it is desirable to mount certain electromagnetic device, for example,
the fuselage of an aircraft or missile. Since the periodic behavior of
the electromagnetic fields around this type of structure is known, it is
possible to extract this behavior analytically, and then solve Maxwell’s
equations on a single two dimensional (2D) plane. This body of revolu-
tion (BOR) approach has been applied to several numerical methods in
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electromagnetics, including the method of moments (MOM), finite el-
ements method (FEM) and the finite difference time domain (FDTD).

In this paper, a FDTD BOR method is prepared based on the algo-
rithm used in [1, 2] with the added ability to model magnetic materials
and magnetic losses. In the algorithm used in [1, 2], the computational
domain was terminated with perfect electric conductor (PEC), which
limit the method to the study of closed cylindrical cavities. Absorbing
boundary conditions (ABC) for the truncation of the mesh for FDTD
BOR algorithms have been described in the past. Merewether ABC
was used in [3] with a FDTD-BOR algorithm, however this algorithm
only took into account a constant variation of the fields in the azimuth
(mode 0). The present work introduces Berenger’s Perfectly Matched
Layer (PML) to the FDTD-BOR algorithm presented in [1, 2]. Even
though [4] presented PML on a FDTD BOR code, this was done in
such a way that absorption of outgoing waves occurred for waves trav-
eling along the direction of the axis of rotation. That is the case for
waveguide-type geometries. In our present work, PML surrounds the
computational domain in a way that all outgoing waves are absorbed.
The PML may be set to PEC for the analysis of cavity resonators or
waveguides. The method has been programmed in such a way that
field components are only defined on the computational domain (CD).
Similarly PML components are only defined in the surrounding PML
layers. This saves large amounts of memory and makes the algorithm
very efficient.

2. THE FDTD BOR TECHNIQUE

The FDTD BOR technique is derived starting from Maxwell’s curl
equations, following the derivation shown in [1, 2] although magnetic
materials have been introduced into the equations. The derivation of
the updating equations for FDTD BOR starts from Maxwell’s curl
equations.

∇× �E = −∂µ
�H

∂t
+ σm �H, and ∇× �H =

∂ε�E

∂t
+ σe�E (1)

Where ε is the permittivity, µ is the permeability, σe is the elec-
tric conductivity, and σm is the magnetic conductivity. The electric
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properties of the medium are assumed to be in the following form

[α] =


αr 0 0

0 αϕ 0
0 0 αz


 (2)

where α can be either ε, µ, σe , or σm . The ϕ variation of E and
H in the cylindrical coordinates system will have the form sin(mϕ)
or cos(mϕ) , where m is an integer that represents the mode number.
Thus, when applying the curl operators in equation (1) the following
terms are obtained

(
1
r

∂Ez(r, z) sin(mϕ)
∂ϕ

)
âr, and

(
−1
r

∂Er(r, z) sin(mϕ)
∂ϕ

)
âz, or

(
1
r

∂Ez(r, z) cos(mϕ)
∂ϕ

)
âr, and

(
−1
r

∂Er(r, z) cos(mϕ)
∂ϕ

)
âz.

(3)

by carrying out the derivatives in (3) it yields

(
1
r
mEz(r, z) cos(mϕ)

)
âr, and

(
−1
r
mEz(r, z) cos(mϕ)

)
âz, or

(
1
r
(−m)Ez(r, z) sin(mϕ)

)
âr, and

(
−1
r
(−m)Ez(r, z) sin(mϕ)

)
âz.

(4)
Hence Maxwell’s equations in (1) reduce to the following six equations
which are given here in a matrix form




0
−∂
∂z

±m
r

∂

∂z
0

−∂
∂r

∓m
r

1
r

∂r

∂r
0






Er

Eϕ

Ez


 = −




(
µoµr

∂

∂t
+ σmr

)
Hr

(
µoµϕ

∂

∂t
+ σmϕ

)
Hϕ

(
µoµz

∂

∂t
+ σmz

)
Hz




(5)
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0
−∂
∂z

∓m
r

∂

∂z
0

−∂
∂r

±m
r

1
r

∂r

∂r
0






Hr

Hϕ

Hz


 =




(
εoεr

∂

∂t
+ σer

)
Er

(
εoεϕ

∂

∂t
+ σeϕ

)
Eϕ

(
εoεz

∂

∂t
+ σez

)
Ez




(6)

Since the change in the ϕ direction has been removed analytically,
the fields at any angle ϕ = ϕo can be related to the fields at ϕ = 0
and the 3D algorithm is then reduced to 2D in the r-z plane. At this
point each equation in (5) and (6) can be discretized by applying finite
difference approximations to yield the updating equations for each field
component. Starting with the first equation in (6), that is:

−∂Hϕ

∂z
− m

r
Hz = εoεr

∂Er
∂t

+ σerEr (7)

The central difference finite difference approximations are applied and
the following equation is obtained

−


Hn+ 1

2
ϕ (i, j)−Hn+ 1

2
ϕ (i, j − 1)

∆z


− m

r
H
n+ 1

2
z (i, j)

= εoεr

[
En+1
r (i, j)− Enr (i, j)

∆t

]
+ σerE

n+ 1
2

r (i, j)

(8)

where the superscript n denotes the time index, that is, the time
step in the FDTD algorithm, and (i, j) are indexes for the space cell.
The index i indicates the position of the cell in the radial direction.
Similarly j indicates the position of the cell in the z direction, as
shown in Fig. 1. The following average procedure is used for the electric
field term at (n+ 1/2) .

E
n+ 1

2
r (i, j) =

En+1
r (i, j) + Enr (i, j)

2
(9)

By introducing (9) into (8), and algebraically collecting the Er terms,
the right hand side (RHS) of (8) may be rewritten as

RHS =
(

2εoεr + σer∆t
2∆t

)
En+1
r (i, j)−

(
2εoεr − σer∆t

2∆t

)
Enr (i, j) (10)
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Figure 1. A finite difference mesh for BOR-FDTD computations,
showing the field components, indexing, cell sizes, and the half cell
at the axis.

by combining this with the left hand side (LHS) and rearranging the
terms the following updating equation for Er is obtained

En+1
r (i, j) =




1− σer∆t
2εoεr

1 +
σer∆t
2εoεr


Enr (i, j)−




∆t
εoεr

1 +
σer∆t
2εoεr




·


Hn+ 1

2
ϕ (i, j)−Hn+ 1

2
ϕ (i, j − 1)

∆z
− mH

n+ 1
2

z (i, j)
(i)∆r


 (11)
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which may be written in the following form

En+1
r (i, j) = CereE

n
r (i, j)

− Cerh





H

n+ 1
2

ϕ (i, j)−Hn+ 1
2

ϕ (i, j − 1)
∆z


 +

mH
n+ 1

2
z (i, j)
(i)∆r




(12)
Similarly, the other five updating equations are derived and are given
here for reference.

En+1
ϕ (i, j) =CeϕeE

n
ϕ(i, j)

+ Ceϕh





H

n+ 1
2

r (i, j)−Hn+ 1
2

r (i, j − 1)
∆z




−


H

n+ 1
2

z (i, j)−Hn+ 1
2

z (i− 1, j)
∆r





 (13)

En+1
z (i, j) =CezeE

n
z (i, j)

+ Cezh





∆r(i)H

n+ 1
2

ϕ (i, j)−∆r(i− 1)H
n+ 1

2
ϕ (i− 1, j)(

i− 1
2

)
∆r2




+
mH

n+ 1
2

r (i, j)(
i− 1

2

)
∆r


 (14)

H
n+ 1

2
r (i, j) =ChrhH

n− 1
2

r (i, j)

+ Chre




(
Enϕ(i, j + 1)− Enϕ(i, j)

∆z

)
− mEnz (i, j)(

i− 1
2

)
∆r


 (15)

H
n+ 1

2
φ (i, j) =ChφhH

n− 1
2

φ (i, j)− Chφe

[(
Enr (i, j + 1)− Enr (i, j)

∆z

)

−
(
Enz (i+ 1, j)− Enz (i, j)

∆r

)]
(16)
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H
n+ 1

2
z (i, j) =ChzhH

n− 1
2

z (i, j) + Chze
−




(
i+

1
2

)
∆rEnϕ(i+ 1, j)−

(
i− 1

2

)
∆rEnϕ(i, j)

(i)∆r2




+
mEnr (i, j)

(i)∆r

]
(17)

Where the coefficients in these update equations are shown below

Cere =




1− σer∆t
2εoεr

1 +
σer∆t
2εoεr


 , Cerh =




∆t
εoεr

1 +
σer∆t
2εoεr


 , Ceϕe =




1−
σeϕ∆t
2εoεϕ

1 +
σeϕ∆t
2εoεϕ




Ceϕe =




∆t
εoεϕ

1 +
σeϕ∆t
2εoεϕ


 , Ceze =




1− σez∆t
2εoεz

1 +
σez∆t
2εoεz


 , Cezh =




∆t
εoεz

1 +
σez∆t
2εoεz




(18)
and

Chrh=




1 +
σmr ∆t
2µoµr

1− σmr ∆t
2µoµr


, Chre=




∆t
µoµr

1− σmr ∆t
2µoµr


, Chϕh=




1 +
σmϕ ∆t
2µoµϕ

1−
σmϕ ∆t
2µoµϕ




Chϕe=




∆t
µoµϕ

1−
σmϕ ∆t
2µoµϕ


, Chzh=




1 +
σmz ∆t
2µoµz

1− σmz ∆t
2µoµz


, Chze=




∆t
µoµz

1 +
σmz ∆t
2µoµz




(19)
From the equations above it is clear that singularities occur for r = 0 ,
that is, at the cells with indexes (0, j) . The singularity at the axis
is handled in the same manner as in [1, 2]. Using a half cell at the
axis (cell of index i = 0 ) makes Hz the only axis component that is
needed to update the fields on adjacent cells, and only when m = 0 .
The Hz component may be updated by using Faraday’s law:∮

∆c

�E · d�l = −
∫∫
∆s

µ
∂ �H

∂t
· d�s−

∫∫
∆s

σm �H · d�s (20)
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The updating equation for the axis Hz component is then given by

H
n+ 1

2
z (0, j) =

−4
∆r (∆tσmz + 2µoµz)

Enϕ(1, j)

−
(

∆tσmz − 2µoµz
∆tσmz + 2µoµz

)
H
n− 1

2
z (0, j) (21)

The updating equations (12–17) and (21) are used in the computational
domain (CD). Surrounding the CD except for the axis of rotation, an
absorbing boundary condition (ABC) is created on the PML algorithm.

3. THE PML BOR ABC

The PML ABC introduced in [5] is used in the present work to absorb
outgoing waves and avoid undesired reflections due to the truncation
of the mesh. As in the normal FDTD-BOR algorithm, the update
equations for the PML surrounding region start from Maxwell’s curl
equations assuming isotropic media. The basic concept of the PML
method is to split the components in two. The reason for doing this is
to break any incident wave into two propagating waves that propagate
in directions normal to each other. Only the normal incident wave is
absorbed in a given PLM region , except for the corners. Figure 2
shows how an incident wave is absorbed in the PML ABC.

A total of twelve split field equations are obtained from the six
equations in (5) and (6)

∂ (Eϕz + Eϕr)
∂z

= µ
∂Hrz

∂t
+ σmz Hrz,

∓m
r

(Ezr + Ezϕ) = µ
∂Hrϕ

∂t
+ σmϕ Hrϕ

(22)

∂ (Ezr + Ezϕ)
∂r

= µ
∂Hϕr

∂t
+ σmr Hϕr,

−∂ (Erz + Erϕ)
∂z

= µ
∂Hϕz

∂t
+ σmz Hϕz

(23)

−1
r

∂r (Eϕz + Eϕr)
∂r

= µ
∂Hzr

∂t
+ σmr Hzr,

m

r
(Erz + Erϕ) = µ

∂Hzϕ

∂t
+ σmϕ Hzϕ

(24)
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Figure 2. Absorption at the PML Region.

−∂ (Hϕz +Hϕr)
∂z

= ε
∂Erz
∂t

+ σezErz,

±m
r

(Hzr +Hzϕ) = ε
∂Erϕ
∂t

+ σeϕErϕ

(25)

−1
r

∂r (Hϕz +Hϕr)
∂r

= ε
∂Ezr
∂t

+ σerEzr,

m

r
(Hrz +Hrϕ) = ε

∂Ezϕ
∂t

+ σeϕEzϕ

(26)

and
−∂ (Hzr +Hzϕ)

∂r
= ε

∂Eϕr
∂t

+ σerEϕr,

∂ (Hrz +Hrϕ)
∂z

= ε
∂Eϕz
∂t

+ σezEϕz

(27)

To each of these equations, the same finite difference approximations
and averaging for conductivity terms that were used in deriving the
CD FDTD-BOR are applied. Each equation then gives an updating
equation for one of the twelve split components.
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The electric field PML equations are written as

En+1
rz (i, j) =−CerzeEnrz(i, j)+ Cerzh

1
∆z

(
H
n+ 1

2
ϕz (i, j)−Hn+ 1

2
ϕz (i, j − 1)

+H
n+ 1

2
ϕr (i, j)−Hn+ 1

2
ϕr (i, j − 1)

)
(28)

En+1
rϕ (i, j) =− CerϕeEnrϕ(i, j)

+ Cerϕh
m

(i)∆r

(
H
n+ 1

2
zr (i, j) +H

n+ 1
2

zϕ (i, j)
)

(29)

En+1
ϕr (i, j) =−CeϕreEnϕr(i, j)− Ceϕrh

1
∆r

(
H
n+ 1

2
zr (i, j)−Hn+ 1

2
zr (i− 1, j)

+ H
n+ 1

2
zϕ (i, j)−Hn+ 1

2
zϕ (i− 1, j)

)
(30)

En+1
ϕz (i, j) =−CeϕzeEnϕz(i, j) +Ceϕzh

1
∆z

(
H
n+ 1

2
rz (i, j)−Hn+ 1

2
rz (i, j− 1)

+H
n+ 1

2
rϕ (i, j)−Hn+ 1

2
rϕ (i, j − 1)

)
(31)

En+1
zr (i, j) =− CezreEnzr(i, j)− Cerzh

1(
i− 1

2

)
∆r2

(
(i)∆rH

n+ 1
2

ϕz (i, j)

− (i− 1)∆rH
n− 1

2
ϕz (i− 1, j) + (i)∆rH

n+ 1
2

ϕr (i, j)

−(i− 1)∆rH
n+ 1

2
ϕr (i− 1, j)

)
(32)

En+1
zϕ (i, j) =− CezϕeEnzϕ(i, j)

+ Cezϕh
m(

i− 1
2

)
∆r

(
H
n+ 1

2
rz (i, j) +H

n+ 1
2

rϕ (i, j)
)

(33)

where

Ceϕre = Cezre =
(
σer∆t− 2ε
σer∆t+ 2ε

)
, Ceϕrh = Cezrh =

(
2∆t

σer∆t+ 2ε

)
,

Cerϕe = Cezϕe =
(
σeϕ∆t− 2ε
σeϕ∆t+ 2ε

)
, Cerϕh = Cezϕh =

(
2∆t

σeϕ∆t+ 2ε

)
,

Cerze = Ceϕze =
(
σez∆t− 2ε
σez∆t+ 2ε

)
, Cerzh = Ceϕzh =

(
2∆t

σeϕ∆t+ 2ε

)
,

(34)
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and the Magnetic field equations are

H
n+ 1

2
rz (i, j) =− ChrzhH

n− 1
2

rz (i, j) + Chrze
1

∆z
(
Enϕz(i, j + 1)

−Enϕz(i, j) + Enϕr(i, j + 1)− Enϕr(i, j)
)

(35)

H
n+ 1

2
rϕ (i, j) =− ChrϕhH

n− 1
2

rϕ (i, j)

+ Chrϕe
m(

i− 1
2

)
∆r

(
Enzr(i, j)+ Enzϕ(i, j)

)
(36)

H
n+ 1

2
ϕr (i, j) =− ChϕrhH

n− 1
2

ϕr (i, j) + Chϕrh
1

∆r
(Enzr(i+ 1, j)

−Enzr(i, j) + Enzϕ(i+ 1, j)− Enzϕ(i, j)
)

(37)

H
n+ 1

2
ϕz (i, j) =− ChϕzhH

n− 1
2

ϕz (i, j)− Chϕze
1

∆z
(Enrz(i, j + 1)

−Enrz(i, j) + Enrϕ(i, j + 1)− Enrϕ(i, j)
)

(38)

H
n+ 1

2
zr (i, j) =− ChzrhH

n− 1
2

zr (i, j)− Chzϕe
1

(i)∆r2

·
((

i+
1
2

)
∆rEnϕz(i+ 1, j)−

(
i− 1

2

)
∆rEnϕz(i, j)

+
(
i+

1
2

)
∆rEnϕr(i+ 1, j)−

(
i− 1

2

)
∆rEnϕr(i, j)

)
(39)

H
n+ 1

2
zϕ (i, j) =− ChzϕhH

n− 1
2

zϕ (i, j)

+ Chzϕe
m

(i)∆r
(
Enrz(i, j)+ Enrϕ(i, j)

)
(40)

where

Chzrh = Chϕrh =
(
σmr ∆t− 2µ
σmr ∆t+ 2µ

)
, Chzre = Chϕre =

(
2∆t

σmr ∆t+ 2µ

)
,

Chrϕh = Chzϕh =
(
σmϕ ∆t− 2µ
σmϕ ∆t+ 2µ

)
, Chrϕe = Chzϕe =

(
2∆t

σmϕ ∆t+ 2µ

)
,

Chrzh = Chϕzh =
(
σmz ∆t− 2µ
σmz ∆t+ 2µ

)
, Chrze = Chϕze =

(
2∆t

σmz ∆t+ 2µ

)
,

(41)
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Figure 3. The PML region close to the axis of rotational symmetry.

As was the case with the CD updating equations, a special equation is
needed to take care of the singularities that appear at the axis. At the
axis half cell, a total of six PML components are present, as shown in
Fig. 3. These components are Hϕr, Hϕz, Erϕ, Erz, Hzr , and Hzϕ ,
all of them with indexes (0, j) . From the update equations above, it
is found that to update Ezr(1, j) , both Hϕr(0, j) , and Hϕz(0, j) are
needed, but these components are being multiplied by r(0) which is
zero, hence they are not needed for updating Ezr(1, j) .

A study of the update equations reveals that the only non-axis com-
ponent that is being updated using axis components is Eϕr(1, j) . If
the Eϕr(1, j) update equation is re-written for the special case i = 1 ,
after rearranging the terms, we get

En+1
ϕr (1, j) = −

(
σer∆t− 2ε
σer∆t+ 2ε

)
Enϕr(1, j)−

(
2∆t

(σer∆t+ 2ε) ∆r

)

·
(
H
n+ 1

2
zr (1, j) +H

n+ 1
2

zϕ (1, j)−
[
H
n+ 1

2
zr (0, j) +H

n+ 1
2

zϕ (0, j)
])

(42)
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using the fact that

Hzr +Hzϕ = Hz (43)

we rewrite (42) as

En+1
ϕr (1, j) =−

(
σer∆t− 2ε
σer∆t+ 2ε

)
Enϕr(1, j)−

(
2∆t

(σer∆t+ 2ε) ∆r

)

·
(
H
n+ 1

2
zr (1, j) +H

n+ 1
2

zϕ (1, j)−
[
(H

n+ 1
2

z (0, j)
])

(44)

So at the axis it is only necessary to compute the non-split Hz , which
may be done by using the integral form of Maxwell’s equation. There-
fore, Erϕ(0, j) and Erz(0, j) are not needed to update Hzϕ(0, j) .

Following the derivation for Hz(0, j) presented for the CD compo-
nents, the update equation for Hz(0, j) in the PML region is derived.
Notice at this point, that in the PML region, of the ϕ directed com-
ponents of the electric field: Eϕr and Eϕz , only Eϕr is related to
Hzr , and Hzϕ . Thus when performing Faraday’s Law only Eϕr is
used, yielding

H
n+ 1

2
z (0, j)= H

n− 1
2

z (0, j)− 2∆t
2µ∆r

(
Enϕr(1, j) + Enϕz(1, j)

)
(45)

The profile of the magnetic and electric conductivities in the PML
region is obtained by using the approach presented in [5], where the
electric and magnetic losses follow the following condition for reflec-
tionless layers,

σmξ
µ

=
σeξ
ε
, where ξ = r or z. (46)

where ε and µ are the CD medium permeability and permittivity.
These losses increase from zero at the PML-CD boundary to a max-

imum value at the last PML layer following a parabolic profile, as an
example, as described in [5].
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Figure 4. The Eϕ field sampled at points 5 cells away from the lossy
PML.

4. NUMERICAL RESULTS

4.1 Verification of the PML equations

To verify that the derived PML equations and algorithm gives cor-
rect results, a computational domain (nr = 52 , nz = 102 ) full of
PML updating equations was prepared first. The losses were set to
zero except on the outer 10 cells, where they were set following the
parabolic profile approach with σemax computed based on the value
of the theoretical reflection at normal incidence R(0) being 10−8 as
given in [5]. This value of R(0) is used in all examples presented in
this paper. The Eϕ component was set to have a sine waveform be-
havior at node (14,40). Figure 4 shows the Eϕ field sampled a few
cells from the active PML specifically at (14,5), (14,75), and (37,40) .
Apart from a small distortion due to the “turn on” of the source, no
reflection is apparent from the mesh truncation using the lossy PML
region.
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Figure 5. Geometry of the dielectric resonator in free space.

Mode Experimental [6] FDTD-BOR-PML % error

TE01 4.85 4.92 2.06

HEM12 6.64 6.6 0.6

TM01 7.6 7.62 0.2

HEM21 7.81 7.9 1.15

Mode Computed [6] FDTD-BOR-PML % error

HEM11 6.3 6.45 2.3

HEM22 8.455 8.45 0.06

TE03 9.10 9.15 0.55

HEM13 9.35 9.42 0.75

HEM14 9.92 10. 0.80

Table 1. Resonant frequencies (GHz) of the dielectric resonator,
compared with previously published data.
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Figure 6. Effects of the inner radius on the resonance of an annular
microstrip antenna.

4.2 Applications

a. Dielectric resonator in free space

The dielectric resonator studied in [6] is analyzed here, and the com-
puted resonant frequencies are compared with the previously published
results. The geometry is a cylindrical resonator of radius r = 5.25 mm
and a height h = 4.26 mm, as shown on Fig. 5. Table 1 shows the res-
onant frequencies computed with the FDTD-BOR with surrounding
PML compared with the results published in [6].

b. Printed microstrip annular patch antenna

The operating frequencies of an annular microstrip antenna were
computed using the developed code. The effects of changing the inner
radius on the resonant frequency of the TM11 mode was the core of
this study. The results from the FDTD-BOR code with PML were
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compared with the results from the MS-Arrays program [7], as shown
in Fig. 6. The MS-Arrays code uses the cavity model approximation,
which could explain the difference between the results obtained with
the two methods since the FDTD-BOR model did not include an infi-
nite ground plane. The dimensions used in our simulation are as fol-
lows: a = 0.0205 m; h = 0.002 m; εr = 2.32 ; the radius of the ground
R = 0.11 m. The cell sizes are ∆z = ∆r = 1.0 mm, the number of cells
in the CD in the r and z directions are nr = 110, nz = 20 , and the
number of PML layers is nl = 10 , the simulation ran for 30,000 time
steps.
c. Printed microstrip circular patch antenna

A microstrip patch of radius (a) on a finite grounded substrate was
analyzed. Results for this geometry appeared in [8]. The radius a is
changed from 0.5 to 0.9 cm. The ground plane is finite, with R =
26.25 mm, h is set to 0.0795 mm with εr = 2.35, ∆z = 0.03975 cm,
∆r = 0.04 cm, nr = 658, nz = 70, nl = 10 , and 30000 steps. Re-
sults from the MOM, the cavity model approximation, the MS-Arrays
program and the FDTD- BOR are shown on Fig. 7. A very good
agreement between all the methods is seen, these agreement tends to
be worse as the frequency of resonance increases. For a = 0.5 cm there
is no good agreement between the FDTD and the other methods, even
when the cell size was reduced to take into account the higher frequen-
cies. This case is presently under investigation.

d. A tapered cavity for the measurement of liquids dielectric constant

The FDTD-BOR-PML code was used to analyze a cavity used for
the measurement of the properties of liquids. This case shows that
the PML may be set to PEC to analyze closed cavities and waveg-
uides. The cavity was designed so that no electromagnetic energy will
propagate out of it through the pipes used for the liquid to flow. The
cavity was analyzed with the pipes shorted and matched. The match-
ing was accomplished by extending the pipes to the PML, as shown on
Fig. 8. Figure 9 shows the field inside the cavity at a given time step,
the figure illustrate that the geometry was correctly defined, including
the staircase approximation to the 45 degree tapered ends. Figure 10
shows the results after performing Fourier transform on the time do-
main data. The field is sampled next to the excitation probe. The first
resonance (TM11) at 15.7 GHz matches with the measurements. Also
it is noticed that no difference exists between the shorted ends and the



274 Rodriguez-Pereyra et al.

Figure 7. Analysis of a circular patch microstrip antenna.

Figure 8. A tapered cavity for the measurement of liquids, shorted
ends and matched ends.
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Figure 9. A tapered cavity for the measurement of properties of liq-
uids. A plane cut of the fields (time step number 1000).

matched ends which indicates that the cavity was correctly designed
such that no energy propagates down the pipes at the frequencies of
interest.

5. CONCLUSIONS

Berenger’s PML has been incorporated to an efficient FDTD BOR al-
gorithm. Numerical results show that the algorithm provides results
that agree with previously published data and with other numerical
methods. Open resonant structures may be studied with this algo-
rithm. Future work should concentrate on developing a near to far
field transformation as was done in [3] that will provide far field quan-
tities necessary for the study and design of the class of antennas that
exhibits the BOR characteristics.
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Figure 10. Er versus frequency, for shorted and matched ends ta-
pered cavities.
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