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1. INTRODUCTION

Computational techniques for solving electromagnetic scattering and
radiation problems involving large complex bodies have been intensely
studied by many researchers. We will focus on the different techniques
for solving integral equations using the method of moments (MoM) [1].
Integral equation solvers result in dense matrices that would require
@) (N 3) operations and O (N 2) memory storage to obtain a direct
solution where N is the number of unknowns; so the computational
labor may be excessive and even prohibitive when dealing with large
scatters. Most efforts have attempted to reduce this computational
cost by different methods. An iterative approach like the conjugate
gradient (CG) requires O (N?) arithmetic operations (corresponding
to a matrix-vector multiply) for each step. In [2-5], the fast mul-
tipole method (FMM) has been proposed as a feasible alternative to
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reduce the computational complexity of the matrix-vector multiply to
0] (N 3/ 2) , calculating the electromagnetic interactions in three differ-
ent stages: aggregation, translation and disaggregation. Two level
schemes can also be performed, to reduced the operation count down
to O (N 4/ 3) . An extension of this technique is the multilevel FMM
[6, 7], which is indeed a nested FMM, reaching an accurate solution in
O (Nlog N) each step at the finest level. It is also noteworthy the ray
propagation fast multipole algorithm (RPFMA) [8], that speeds up the
FMM through radiation beam ideas to window the translation stage
and scales up the computational complexity as O (N 4/ 3) . An analo-
gous windowing procedure has been performed in [9], where the same
computational cost is achieved evaluating asymptotically in the high-
frequency limit the plane wave translation operator of the FMM. A
two-level approach, based on an integral representation of the Green’s
functions and termed the fast steepest descent path algorithm (FAS-
DPA), was proposed in [10]. The FASDPA performs the translation
through basis of plane waves and a spatial distribution of the subscat-
ters into different groups with O (N 4/ 3) counts.

The methods based on specific basis transformations are also note-
worthy. Canning [11, 12] has developed the impedance matriz location
method (IML), which generates a sparse MoM matrix by constructing
a set of basis that provide highly directional beams. Otherwise, in [13],
the singular value decomposition (SVD) is applied to diagonalize the
MoM matrix changing the standard basis. Another approach to get a
sparse matrix consists of using wavelet transforms [14-16]. The degree
of sparsity reached is closely related to the reduction of the crunch-
ing, resulting in an O (N log N) matrix-vector multiply. Recently, the
generalized sparse matrixz reduction (GSMR) technique that generates
a sparse matrix choosing a set of current distributions over the entire
scatter surface, was presented in [17].

Regarding the present work, a new set of basis functions character-
ized by its decoupled far-field radiated power is built up. We hope the
discussion here may offer some insights into the physical interpretation
of these set of decoupled basis. These basis are achieved by decom-
posing the power radiated by standard basis (e.g., pulse functions) via
matrix algebra. These new basis are decoupled, so the summation of
the power radiated by each basis is just the power due to the scattered
field. The reduction of the number of basis (up to approximately 2
basis per wavelength instead of the typical 10 basis per wavelength
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used in the conventional MoM formulation) together with the highly
sparse system matrix, suppose to decrease, considerably, both the com-
putational cost and the memory requirements without losing accuracy
to characterize the scattered field. This paper is restricted to two-
dimensional problems (2D); although, the proposed formulation can
be straightforward extended to three-dimensional cases.

The present paper is organized as follows: In Section 2 the radiated
power coupling between the different basis is presented in a compact
formulation that will be described in detail in Appendiz A for pulse
basis functions. The formulation of the proposed method, based on
the singular value decomposition (SVD), is given in Section 3. Some
examples and computations are presented in Section 4 in order to illus-
trate the capabilities of the proposed technique. To conclude, Section
5 summarizes the paper and shows some conclusions achieved.

2. RADIATED POWER COUPLING BETWEEN BASIS
FUNCTIONS

The electric field integral equation (EFIE) is commonly used to solve
electromagnetic scattering problems. Imposing the boundary condition
on the surface (S) of a 2D perfectly electric conducting (PEC) scatter,
its formulation is given by

—nx—/ k:‘p p')dl = —i x E* (p) (1)

where E?(p) is the incident field at a point p € S, J(p') is the in-

duced current radiating in free space, H((]z) is the second kind Hankel
function with order zero and 7 is an outward unit normal vector to the
surface. The total electric field, E!(p) can be expressed as the sum-
mation of the incident field, E?(p), and the scattered field, E*(p),
which can be expressed as a function of the induced currents as,

E* (p) = —=F R (0) 1 (k|p = p'|) (2)

Discretizing (1), and using pulse basis functions for expanding J to-
gether with a point matching procedure, yields to the MoM matrix
formulation,

Zr=e (3)
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where Z is an N x N impedance matrix, = is an N x 1 vector
representing the unknown current distribution, and e is an N x 1
vector describing the incident field.

The power associated to the scattered field can be computed inte-
grating the scattered power density over a close surface around the
scatter. The scattered field power can be decomposed as a function of
the scattered field due to each basis function. For a Zz-polarized wave
(TM polarization) this decomposition is given by

mkwo @ﬁw,>-;ﬁm@m¢

= 2,'70 <Z !Tzfz P, ¢)> Zj:x]'fj(pa ¢) pdd) (4)
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where 79 is the intrinsic impedance, E? (p, ¢) represents the z-compo-
nent of the electric field due to the i-basis, x; is the coefficient of
the i-current constituting the x vector, f;(p,®) defines the electric
field radiated by the i-basis (constituting the f vector) and A is an
N x N square matrix describing the coupling between primary patterns
of the basis functions. The quadratic form (4) permits to manipulate
easily the relationship between basis and power through matrix algebra
decompositions.

An analogous formulation can be derived for the TE case. A more
detailed description, restricted to pulse basis functions, is performed
in Appendiz A for both polarizations (TM and TE).

3. DECOUPLING BASIS FUNCTIONS

The proposed method is based on the use of a set of decoupled ba-
sis functions accomplished by the SVD of the radiated power coupling
matrix, A, which is clearly related to the real part of the impedance
matrix. The characteristics of the resultant matrices (U, X, V) make
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this particular decomposition method specially suitable to obtain de-
coupled basis and to simplify the calculation of the MoM solution. The
SVD of the coupling matrix is given by

A=UxvH (5)

where U = (uy,...,uy) and V = (v1,...,un) are matrices with or-
thonormal columns and ¥ = diag(oy,...,on) is a diagonal matrix
whose elements are ordered decreasingly.

The above mentioned matrix, A, is hermitian and definite positive
(z Az > 0) with real and positive diagonal terms. Taking into ac-
count these properties and the uniqueness of the SVD, it can be proved
that U equals to V. Defining

L=v", (6)
the power coupling matrix can be written as
A=LUyL. (7)
Substituting (7) into (4), the following expression is achieved
Prog =28 Az = 29 LS Le = wl Y (8)

A set of basis functions (w) are considered to be decoupled if their
associated radiated power can be expressed as a diagonal matrix. (The
elements outside the diagonal would represent the power interactions
between nonself-terms, so a diagonal matrix means decoupling between
different basis). Note that the power coupling matrix associated with
this equivalent basis is just the diagonal matrix 3. So it can be con-
cluded that the new set of decoupled basis is given by,

w= Lx 9)

Considering the orthonormal property of matrix L, the standard MoM
basis, x, could be achieved as a function of the new basis, w, as

L= = s=1L%w=Vw (10)

substituting (10) into (3), and following a Galerkin procedure, an
equivalent matrix representation is obtained,

VHEZVw =VHe (11)
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Figure 1. Singular values of the power coupling matrix, A .

It is possible to generate the decoupled-domain matrix elements by
direct integration in the standard moment method fashion avoiding
matrix-matrix multiplication. If the sparsity structure of the decou-
pled-matrix may be predicted in advance, it may be predicted in ad-
vance, it may be possible to significantly reduce the fill time of the
proposed method by coupiling only the significant matrix elements.
Regarding the physical interpretation, the columns of the matrix V, v;,
represent the relation between the novel and the old basis, while the i-
diagonal element of the matrix X is just the power radiated by the new
i-basis. It is also noteworthy that these diagonal elements decrease as
the index i increases (due to the special characteristics of the SVD);
which means that the power radiation of the associated basis vanishes.
Therefore, the last basis can be neglected and the solution of the MoM
will not change appreciably. In practice, the distribution of singular
values in the matrix ¥ has an abrupt gap (see F'ig. 1) which allows to
identify the more influential decoupled basis over the scattered field.
This leads to a significant reduction in the number of basis functions
up to about 2 or 3 basis per wavelength without losing accuracy.
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Therefore, the equation solved is a truncated version of (11),
VEZV ypwy = Vile (12)

where the matrix V is substituted by a matrix formed by its own M
first columns, Viy (N x M) and wys is a vector (M x 1) containing
the considered M first decoupled basis.

Equation (12) can be written in a compact form as

ZiecWM = €dec (13)

It can be notice that, using the above procedure, the new matrix Zg..
has a quasi-diagonal structure, that is, most elements are concentrated
close to its diagonal. Such an structure permits the application of
a thresholding procedure whereby the matrix is rendered sparse, in
order to simplify the solution of the resulting linear system, practically
without degradation in the accuracy.

The reduction in the computational cost is not obvious at this point.
The SVD of the full coupling matrix A (N x N) requires O (N 3) op-
erations. This cost is comparable to solve the system in a straight-
forward manner, inverting the impedance matrix Z. In spite of the
appropriate physical behavior of this new set of basis (they are decou-
pled), its computation is highly inefficient. However, for the sake of
savings in terms of computational requirements some extra measures
can be taken:

e The matrix A has a tendency to concentrate its main values
close to its diagonal due to the augmented decoupling between
the radiated fields generated by the basis as their relative distance
increases. Therefore, the elements faraway from the diagonal are
sufficiently reduced to be neglected. It can be experimentally
proved that the coupling between basis faraway more than one
or two wavelengths can be neglected, so only those interactions
from the self-basis and a few neighboring basis must be computed
(namely the coupling between their associated radiated fields).
This leads to a highly sparse matrix As, whose SVD can be
evaluated in O (N 2) counts. Such an approximation does not
influence the accuracy of the MoM, though the new basis are,
now, slightly matched.
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e The singular values are just the radiated power associated to the
decoupled basis, therefore only the main singular values (first
and higher diagonal terms) of the coupling matrix A will in-
fluence considerably the solution, enabling the performance of a
partial decomposition (partial SVD, e.g., by means of Lanczos
algorithm) instead of the complete SVD and relieving the com-
putational burden.

4. NUMERICAL RESULTS

In this section, several results for both TE and TM polarizations are
presented to validate the above described method.

The first example is a perfectly conducting circular cylinder of ra-
dius r = 10X illuminated by an incident plane wave. The choice of
10 unknowns per wavelength which is a typical parameter in conven-
tional MoM formulations implies 629 basis to get accurate results for
this particular geometry. The SVD of the power coupling matrix is
performed in order to obtained the decoupled basis.

The closed form current solution [18] together with the current re-
sults achieved, due to a TM polarized incident plane wave, are shown
in Fig. 2. As can be seen a good agreement is observed with only 134
basis vs. the original 629 basis what implies diminishing up to 2.13
the number of unknowns per wavelength. An analogous result is ac-
complished for TE polarization (see Fig. 3), achieving an exact current
with only 2.27 basis per wavelength (143 basis). The normalized error
has been defined as

Normalized error in current = , (14)
where = and xj; are column vectors containing, respectively, the
current achieved by the closed form solution and the current due to

M decoupled basis. The normalized error in the radiated fields is
calculated analogously as,

[E—Ey

mro

Normalized error in radiation =

being E the electric field generated analytically and Ej; the electric
field due to M decoupled basis. Both errors are depicted in Fig. 4 for
both polarizations (TE and TM), observing a similar behavior. The
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Figure 2. Current over a perfectly conducting cylinder of radius 10\
illuminated by a TM polarized plane wave. Decoupled basis solution
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illuminated by a TE polarized plane wave. Decoupled basis solution

in solid line, conventional MoM solution in dots.
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Figure 4. Relative error in current and radiated field vs. the number
of basis per wavelength. Solid line: TM polarization. Dashed line: TE
polarization.

normalized error in current is always greater than the error in the
radiation, however both errors are negligible when the number of basis
per wavelength is greater than 2.2. These results can be explained
by means of the power associated to the decoupled basis, which is
plotted in Figs. 5—6 (TM and TE polarization, respectively). The
power radiated by the last decoupled basis vanishes, concluding that
only the basis corresponding to the main singular values influence the
result.

In order to prove the ability of the proposed method to deal with
more complex geometries, a second example is presented. It consists
on a perfectly conducting circular sector (r = 30\, 120°) in front of
a current line. According to the above mentioned MoM formulation,
a conventional solution of this electromagnetic problem would involve
629 basis. The special characteristics of the radiated power coupling
matrix allows us to apply the decomposition process to an approxi-
mate banded matrix (truncated version of the power coupling matrix
whose elements are those closest to the diagonal, being the distance
limit 1.4\) without losing accuracy in the solution. Figs. 7-10 show
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Figure 7. Current over a perfectly conducting geometry illuminated
by a TM polarized current line. Power coupling matrix approximated
by a banded matrix. Decoupled basis solution in solid line, conven-
tional MoM solution in dots.

the current and normalized radiated field for TM and TE polariza-
tions, compared with the reference MoM solution. A good agreement
is achieved for TM polarization with only n = 142 basis in all cases,
supposing a reduction in the number of basis per wavelength up to
2.25. Even better are the results for the TE polarized radiated field
reaching a precise result for n = 132 basis (2.1 basis per wavelength).
However, it must be pointed out that the error in current stays around
1% up to nearly 9 basis per wavelength due to the oscillating behavior
of the current noticed on the borders.

The percentage of elements below a given threshold is depicted in
Fig. 11 together with the normalized error achieved in the currents,
when this threshold is applied to render some elements of new MoM
matrix to zero. Analyzing both graphics we can establish a suitable
threshold and the resulting MoM matrix will be rendered sparse, en-
abling the numerical solution. The same behavior is observed for TE
polarization as can be seen in Fig. 12 providing a significant reduction
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geometry illuminated by a TM polarized current line. Power coupling
matrix approximated by a banded matrix. Decoupled basis solution in
solid line, conventional MoM solution in dots.
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in the computational cost and storage requirements.

Some numerical results have been shown to illustrate the capabili-
ties of the proposed method. For the examples considered, the number
of basis required to get accurate results has been reduced up to 2-3
basis per wavelength regarding the characteristic 10 basis per wave-
length of the conventional MoM formulation. This reduction has been
shown to be valid even when the starting power coupling matrix is an
approximate banded matrix.

It is worth noting that the proposed method keeps on working when
dealing with nonsmooth scatters. Though the method does not con-
sider some significant high frequency current components, it computes
all those influencing radiation considerably.

5. CONCLUSIONS

In the present paper, a new set of basis has been introduced as a feasible
alternative to diminish the unknowns required to solve electromagnetic
scattering problems when using the method of moments. By applying
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the SVD to a matrix A, defined as the radiated power coupling matrix,
a basis transformation is performed, and the standard MoM basis are
replaced by a set of decoupled basis. Furthermore, the SVD facilitates
a systematic reduction of the impedance matrix to a submatrix of
smaller rank. However, given the excessive computational cost of the
SVD method, O (N 3) , it can not be handled yet for large problems.
Therefore, some extra measures must be taken for the sake of saving
computer requirements.

These measures take advantage of the special characteristics of the
coupling matrix A, yielding a sparse representation of the impedance
MoM matrix Z without considerable loss of accuracy. The matrix
A tends to concentrate its main values close to its diagonal, which
allows to neglect the elements faraway from the diagonal, leading to
a highly sparse matrix As; whose SVD can be evaluated in O (N 2)
counts, without significant loss of precision. A feasible alternative
could be to apply the Lanczos algorithm [19] to the coupling matrix A .
This algorithm is an iterative procedure, which achieves three matri-
ces ( U',¥', V') with analogous properties to those given by the SVD
(U,3,V) but where ¥/ is a tridiagonal matrix. It involves (2k + 8)i
flops in a single step, being k the average number of nonzeros per row
and 4 the current iteration. The number of iterations, n, required
to get accurate results uses to be many fewer than N, so the com-
putational cost associated to a dense matrix is O (N nQ) and O (n2)
when a sparse matrix (such as the banded power coupling matrix, A )
is being considered. Therefore, when applying the Lanczos procedure,
a reduction in CPU time is achieved at the expense of allowing some
coupling between the new basis, namely the basis do not interact only
with themselves but with their closest neighbors (slightly coupled).
Otherwise, the reduction of the number of unknowns would be similar
to that obtained when using the complete SVD (up to 2-3 unknowns
per wavelength).

Summing up, the proposed technique based on the SVD of the power
coupling matrix A has demonstrated to provide appropriate solutions
for the method of moments with only 2-3 basis per wavelength, reliev-
ing not only the computational burden but the storage requirements.
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Figure 13. Coordinate system.

APPENDIX A. CLOSED FORM EXPRESSIONS FOR THE
POWER COUPLING MATRIX

The coupling matrix, A, used in the body of the paper, considers
the interaction between far-field patterns of the standard basis func-
tions. Each element, A;;, represents the radiated power due to the
interaction between the i and j basis (which is null if the basis are
decoupling). In order to calculate this term the radiated power will be
expressed as function of the associated basis coefficients.

Using the coordinate system depicted in Fig. 13, the following vector
is defined

pi=p—p; (16)
whose magnitude can be approximated in the far-field region as

pi=p—p;p for phase terms (17)
pi=p for amplitude terms (18)

TM and TE polarizations will be treated separately using pulse basis
functions.

A. TM Case

The z TM-polarized electric field radiated over a remote point by
the i-pulse function (with associated current I; = AC;J;; being AC;
the width of the basis and J; is the current density) can be expressed
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as [1]

B () = 1A (k) (19)

Substituting the asymptotic expansion of the Hankel function, HéQ) :

D) o,
e (20)

and (17), in (19), becomes

- 2 . o
E? (p) ~ %Ii /7r_kpe—ﬂc(p—mp)eﬁr/4 (21)

p=2Zcoso+ ysing (22)

where

The power generated by the impressed currents can be computed as
the coherent summation of the electric field radiated by all the basis
functions:

2
Prod = —1 B2 (p, )] - [ (p. )] pdb
2o

TS E e

B 1
2n0

ZEj (p,0)| pdp  (23)

Substituting eq. (21) in eq. (23) and interchanging the integration and
the summation then

kn . me
Py = w—iz:ZACiACjJZ- Jj /0 eIk (P =PIP g (24)
i

which can be written as a quadratic form as:
Praa = JTAJ (25)

where J is a column vector containing the current density of each
pulse function, and A is the power coupling matriz whose elements
are given by

k , )
Aij = lgoACAC / k(P =P )b g (26)
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which can be solved applying the integral representations of the Bessel
functions [20]:
_ kno

A =75

ACZ'ACJ'JO (kpij) (27)
B. TE Case

In this case, an analogous procedure is followed using the magnetic
field instead of the electric field. The 2 polarized magnetic field in the
far-field region can be expressed as [1]

_ JEAG

H (p) Ji cos(¢i) HY®) (ef) (28)

where ¢; is the angle between p and n;, the normal vector in the i-

)

pulse position. Using the Hankel function, H 52 for large arguments,

~ 2 SV
H (ko) = | e hedon/ (29)

and eq. (17), eq. (28) becomes

H; (p) = jkici Ji COS(¢i)\/ﬂzkpe_jk(/’—l’iﬁ)@j?mM (30)

The outgoing power is calculated as

2m *
Praa = | [ZW(M@] 2 H (00| pdo (31
i J

Substituting (30) in (31) and interchanging the integration and the
summation then

KAC,AC; [ o
Prog = Z Z 77017]Jz JJ/O Cos(¢i) COS(¢j)eJk(Pj Pi)ﬂdqb

67
i
(32)
The elements of the power coupling matrix, A, will be achieved in a
straightforward manner through the quadratic form (25),

. T]()k2ACZ‘ACj

2 21 . R
R . . _ Jk(pj*pi)P
A j 3 /0 cos(o;) cos(qﬁj)ﬂk ,06 pd
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and applying the integral representations of the Bessel functions [20],
obtaining:

k , )
Aig :%ACiACj (COS(‘ZSJ‘ — ¢i)Jo(kpij)

— cos (2¢zj — (¢ + ¢;)> Ja (kpij)> (33)

where ¢/ and qﬁ} are the angles between 7; and 7; and the & axis,
and ¢;; is the angle between p;; vector and the & axis.

It is worth pointing out that the matrix terms obtained are real
numbers for both cases and that the matrix is symmetric due to the
properties of the power coupling between basis.
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