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1. INTRODUCTION

Multilayered and multiconductor transmission lines are widely used for
many applications in the microwave and millimeter-wave integrated-
circuit devices, such as filters, power dividers, and directional couplers.
These circuits are usually designed by utilizing the knowledge of mode
propagation constants, characteristic mode impedances, and ratios of
modal line currents or modal line voltages for the coupled lines. When
the operating frequency is relatively low, these line parameters may
be obtained [1] in terms of the quasi-static capacitances and induc-
tances of coupled TEM lines. However, as the frequency is increased,
the electromagnetic nature in the coupled lines becomes important.
This requires an evaluation of the line parameters using the full-wave
analysis [2]. Although various numerical techniques [3] have been de-
veloped for the rigorous analysis of coupled lines, those direct solution
methods become much more involved and are very time consuming
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computationally when the number of lines increases.
In this paper, we shall present an approximate method to obtain

the line parameters of coupled microstrip lines based on the full-wave
analysis. The technique uses the coupled-mode equations [4, 5] which
describe the wave propagation along the lines in terms of the coupled-
differential equations for the amplitudes of currents in each line. The
coupling matrix in the equations, expressed by overlap integrals be-
tween the eigenmode fields of each isolated single line, characterizes
the electromagnetic properties of the coupled lines. The eigenvalues
and eigenvectors of the matrix give the propagation constants and the
ratios of currents on the lines for the coupled modes. The characteristic
mode impedances for the total power and the partial power definitions
[6, 7] are expressed in terms of those eigenvectors and current ratios.
Then all of the line parameters are determined by the elements of cou-
pling matrix in the coupled-mode equations.

The coupled-mode theory provides simpler analytical and numeri-
cal procedures than the direct numerical solution methods, and is easy
to apply to configurations of multiple nonidentical coupled lines, since
the eigenmode solutions of the isolated single line are readily obtained
using the Galerkin’s moment method in the spectral domain. To verify
the proposed theory, two nonidentical coupled lines and three noniden-
tical coupled lines in a single plane, and two identical coupled lines in
dual planes are chosen as models of the coupled-mode analysis. The
numerical results for the mode propagation constants and character-
istic mode impedances are compared with those [2, 7–10] obtained by
the direct numerical solution method for the coupled-lines. It is shown
that both results are in good agreement.

2. FORMULATION

2.1 Coupled-mode Equations

Consider coupled N microstrip lines situated in a M -layered di-
electric substrate over a ground plane of perfect conductor. The strips
of widths 2wν ( ν = 1, 2, ..., N ) are assumed to be perfect conductors
of zero thickness. The center of the ν-th strip is located at x = xν .
The thickness and relative dielectric constant of the i-th layer are hi
and εi ( i = 1, 2, ...,M ), respectively. The coupled-mode equations
for the coupled-microstrip lines are formulated using the generalized
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Figure 1. Cross section of multilayered multiple-coupled microstrip
lines.

reciprocity relation [4, 5]. The electromagnetic fields and currents of
the coupled lines in Fig. 1 are approximated as follows:

E(x, y, z) =
N∑
ν=1

aν(z)eν(x, y) (1)

H(x, y, z) =
N∑
ν=1

aν(z)hν(x, y) (2)

J(x, y, z) =
N∑
ν=1

aν(z)jν(x, y) (3)

where aν(z) are unknown amplitude functions and eν(x, y) , hν(x, y)
and jν(x, y) are the eigenmode functions for the fields and currents
propagating in the +z direction along N each microstrip in isolation
as shown in Fig. 2. The eigenmode fields and currents propagating
in the −z direction in the respective N isolated microstrips are ex-
pressed as follow:

E′ν = [eν,t(x, y)− ẑeν,z(x, y)] exp(iβ(0)
ν z) (4)

H′ν = [−hν,t(x, y) + ẑhν,z(x, y)] exp(iβ(0)
ν z) (5)

J′ν = [x̂jν,x(x, y)− ẑjν,z(x, y)] exp(iβ(0)
ν z) (6)

(ν = 1, 2, ..., N)
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Figure 2. Isolated single microstrip ” ν ” and ” µ ” located in the orig-
inal dielectric layers as shown in Fig. 1.

where β
(0)
ν is the propagation constant of the isolated ν-th microstrip,

and the subscripts t , x , and z denote the transverse, x , and z com-
ponents of the indicated vectors, respectively. Substituting Eqs. (1)–
(3) and Eqs. (4)–(6) for each of N isolated single microstrips into the
generalized reciprocity relation [4], the coupled-differential equations
governing the evolutions of modal amplitudes aν(z) are derived as
follows:

d

dz
a = −i[C]a (7)

with

a = [a1(z) a2(z) ... aN (z)]T (8)
[C] = [M]−1[K] (9)

Kνµ = β(0)
ν Mνµ +Qνµ (10)

Mνµ =
1
2
(Nνµ +Nµν) (11)

Nνµ =
1
2

∫
S
[eν(x, y)× hµ(x, y)] · ẑ dxdy (12)

Qνµ = − i
4

∫
lµ

[eν,x(x, y)jµ,x(x, y)− eν,z(x, y)jµ,z(x, y)] dxdy (13)

(ν, µ = 1, 2, ..., N)
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where S represents the cross-sectional area of the structure, lµ de-
notes the cross-sectional contour of the µ-th line, and the eigenmode
fields and currents in the isolated lines are normalized so that Nνν = 1 .
Note that Qνν = 0 since eν,x(x, y) = eν,z(x, y) = 0 on the surface of
the ν-th line. Equation (7) is the coupled-mode equations which play
the same role as the transmission line equations in the quasi-static ap-
proach [1]. The solutions determine the propagation constant βm of
the coupled mode m and the modal amplitude aνm of the current on
the ν-th line.

The problem of coupled N microstrip lines was reduced to that of
isolated N microstrip lines. When the eigenmode fields and currents
for the isolated N lines are obtained, the coupling coefficients Kνµ ,
Nνµ , and Qνµ governing the interaction between the ν-th and µ-th
lines are easily calculated by the overlap integrals given by Eqs. (12)
and (13). For the microstrips of zero thickness, these integrals can
be efficiently performed [4, 5] in the spectral domain by using the
Galerkin’s moment method solutions for the conventional single mi-
crostrip. The details of this numerical method have been well docu-
mented in the open literature [3]. The reciprocity relation [4, 5] be-
tween the eigenmode fields of the isolated ν-th and µ-th lines leads to
the identity

β(0)
ν Mνµ +Kνµ = β(0)

µ Mµν +Kµν . (14)

This relation reduces the calculation of the coupling matrix [C] in
Eq. (7).

2.2 Characteristic Mode Impedances

The normal mode parameters of the coupled microstrip lines are the
mode propagation constants, the modal current ratios on the N lines,
and the characteristic mode impedances of the N lines. The propaga-
tion constants are given by the eigenvalues of the coupling matrix [C]
and the associated eigenvectors determine the modal current ratios.
The characteristic mode impedances can be derived by utilizing these
solutions to the coupled-mode equations (7). The current on the ν -th
line for mode m is given by

Iνm = aνme
−iβmz

∫ xν+wν

xν−wν
jν,z(x)dx

(ν,m = 1, 2, ..., N)
(15)
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where jν,z(x) is the z-component of current density on the isolated ν-
th line, and aνm denotes the ν-th component of the m -th eigenvector
of [C] .

When the problem of the isolated ν-th microstrip is solved by
Galerkin’s moment method with Chebyshev polynomial basis func-
tions, Iνm is calculated as follows:

Iνm = aνm

∫ xν+wν

xν−wν

N−1∑
n=0

γνn

Tn

(
x− xν
wν

)
√

1−
(
x− xν
wν

)2
dx

= aνmwν

∫ 1

−1

1√
1− t2

N−1∑
n=0

γνnTn(t)dt

= aνmwνγν0π

(16)

where Tn(t) is a Chebyshev polynomial of order n of the first kind and
γνn is the expansion coefficient of the longitudinal current component
jν,z(x) . The characteristic mode impedance Zc,νm of the ν-th line for
mode m is defined as

Vνm = Zc,νmIνm (17)

where Vνm represents the eigenvoltage. The eigencurrent Iνm and
eigenvoltage Vνm are related to the power carried by mode m in the
z direction. There are two different definitions [7] for the power. When
the total power definition is used, we have

1
2

N∑
ν=1

VνmI
∗
νm′ = Pmδmm′ (18)

where Pm is the total power carried by mode m and δmm′ is the
Kronecker’s delta. Using the solutions to Eq. (7), Pm is expressed as
follows:

Pm =
1
2

∫
S
(Em ×H∗m) · ẑdxdy

=
N∑
ν=1


 N∑
µ=1

aνmaµmNνµ


 (19)

where Em and Hm are the total electric and magnetic fields for mode
m and aνm is real, because the structure is assumed to be lossless.
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Figure 3. Cross section of two nonidentical coupled microstrip lines.

Equations (16), (17), and (19) are substituted into Eq. (18) to obtain
the expression of Zc,νm in terms of the solutions to the coupled-mode
equations (7). The results are illustrated for the coupled two microstrip
lines shown in Fig. 3 as follows:

Zc,11 =
2P1

(a11w1γ10)2(1−Ri21/Ri22)
(20)

Zc,21 =
2P1

(a21w2γ20)2(1−Ri22/Ri21)
(21)

Zc,12 =
2P2

(a12w1γ10)2(1−Ri22/Ri21)
(22)

Zc,22 =
2P2

(a22w2γ20)2(1−Ri21/Ri22)
(23)

with

Pm = a2
1m + a2

2m + 2a1ma2mM12 (m = 1, 2) (24)

Ri21 =
I21
I11

=
a21w2γ20

a11w1γ10
(25)

Ri22 =
I22
I12

=
a22w2γ20

a12w1γ10
(26)

where Riνm is the ratio of current amplitudes on the two lines for mode
m . When the partial power Pνm definition is employed, on the other
hand, we have

1
2
VνmI

∗
νm = Pνm (27)
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with
Pνm =

1
2

∫
S
(Em ×H∗νm) · ẑ dxdy

=
N∑
µ=1

aµmaνmNµν

(28)

where Hνm represents the magnetic field for mode m produced by
the current on the ν-th line. Using Eq. (17) in Eq. (27), the charac-
teristic mode impedance Zc,νm based on the partial power definition
is derived. For the coupled two microstrip lines shown in Fig. 3, they
are obtained as follows:

Zc,11 =
2P11

(a11w1γ10)2
(29)

Zc,21 =
2P21

(a21w2γ20)2
(30)

Zc,12 =
2P12

(a12w1γ10)2
(31)

Zc,22 =
2P22

(a22w2γ20)2
(32)

where

P1m = a2
1m + a2ma1mN21 (33)

P2m = a1ma2mN12 + a2
2m. (34)

The propagation constants βm , current ratios Rνm , and character-
istic mode impedances Zc,νm are used to derive the elements of the
impedance matrix and scattering matrix for the 2N -port circuits for
the coupled N microstrip lines. The results [11] are of the same form
as those [1] obtained from the transmission-line equations in the quasi-
static approach. The important difference is that the current ratios
and modal characteristic impedances in the present approach are ob-
tained in terms of the electromagnetic coupling coefficients, whereas
those of the quasi-static approach are given in terms of the elements
of the capacitance matrix.

3. NUMERICAL EXAMPLES

To validate the proposed theory, microstrip line structures as shown in
Figs. 3, 5, and 8 are chosen as models for the coupled-mode analysis.
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Figure 3 shows the cross section of coupled two microstrip lines in a
single plane with w1 = 0.3 mm, w2 = 0.6 mm, h1 = 0.635 mm, and
ε1 = 9.7 . The effective dielectric constants for the coupled modes 1
and 2 are plotted in Fig. 4 as functions of frequency for the separa-
tion distance d = 0.4 mm and compared with those [8] obtained by
the direct numerical solution method. Both results are in good agree-
ment. The modes 1 and 2 are usually referred to as c mode and π
mode, respectively. In Table 1 a typical set of the characteristic mode
impedances calculated at 10 GHz using Eqs. (20)–(23) and Eqs. (29)–
(32) are compared with values of [9] for several separation distances.
The coupled-mode theory yields nearly identical results for the two
definitions of characteristic mode impedances and both results satisfy
the relation Zc,11/Zc,21 = Zc,12/Zc,22 given in [1] within the relative
errors less than 10−4 . The discrepancies between the present results
and the values of [9] are less than 8% except for Zc,12 and Zc,22 with
d = 0.1 mm. It is noted that the relative errors of [9] for satisfying the
relation Zc,11/Zc,21 = Zc,12/Zc,22 are 10−2 to 10−3 .

The second example is coupled three microstrip lines in a single
plane as shown in Fig. 5 where w1 = 0.15 mm, w2 = 0.3 mm, w3 =
0.6 mm, d12 = 0.2 mm, d23 = 0.4 mm, h1 = 0.635 mm, and ε1 = 9.8 .
Figure 6 shows the effective dielectric constants calculated for the cou-
pled modes 1, 2, and 3 as functions of frequency. It is seen that the
results are in very good agreement with those [10] obtained by the
spectral domain method for the coupled three lines. The characteris-
tic mode impedances Zc,11 to Zc,33 calculated using the total power
definition are shown in Fig. 7 and compared with the values of [10]. A
good agreement between both results is observed except for Zc,11 in
the high frequency region. The results of the coupled-mode analysis
using the partial power definition are omitted, because they are nearly
identical to those of the total power definition.

Finally we consider coupled two microstrip lines in dual planes as
shown in Fig. 8 where w1 = w2 = 5µm, h1 = h2 = 10µm, and
ε1 = ε2 = 4.0 . The effective dielectric constants of the coupled-modes
1 and 2 calculated for d = 30µm are shown in Fig. 9 and compared
with those [2] obtained by the direct spectral domain method. It is seen
that both results agree very well. Figure 10 shows the comparison of
the characteristic mode impedances. The results of the coupled-mode
analysis are in good agreement with those of [2] except for Zc,11 . The
results of [2] have been obtained using the partial power definition and
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(a) Total power definition (20)–(23)

d[mm] Zc,11[Ω] Zc,21[Ω] Zc,12[Ω] Zc,22[Ω]
0.1 70.98 41.29 40.81 23.74
0.2 66.26 40.11 43.16 26.13
0.3 63.11 39.18 44.86 27.85
0.4 60.85 38.45 46.13 29.15
0.5 59.18 37.87 47.10 30.14
0.6 57.91 37.41 47.85 30.91

(b) Partial power definition (29)–(32)

d[mm] Zc,11[Ω] Zc,21[Ω] Zc,12[Ω] Zc,22[Ω]
0.1 71.26 41.20 40.70 23.95
0.2 66.50 40.04 43.07 26.30
0.3 63.32 39.13 44.79 27.99
0.4 61.04 38.41 46.07 29.26
0.5 59.34 37.84 47.06 30.24
0.6 58.05 37.39 47.82 30.99

(c) Reference [9]

d[mm] Zc,11[Ω] Zc,21[Ω] Zc,12[Ω] Zc,22[Ω]
0.1 75.50 43.90 35.00 20.70
0.2 71.43 42.86 39.94 24.30
0.3 68.57 42.14 42.82 26.43
0.4 66.43 41.43 44.29 27.86
0.5 64.29 40.71 46.43 29.29
0.6 63.21 40.00 47.50 30.35

Table 1. Comparison of the characteristic mode impedances of two
nonidentical coupled microstrip lines at f = 10 GHz. The values of
other parameters are the same as those in Fig. 4.
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Figure 4. Effective dielectric constants of two nonidentical coupled
microstrip lines shown in Fig. 3 with w1 = 0.3 mm, w2 = 0.6 mm,
h1 = 0.635 mm, ε1 = 9.7 , and d = 0.4 mm. CMT refers to the present
coupled-mode theory.

Figure 5. Cross section of three noidentical coupled microstrip lines.
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Figure 6. Effective dielectric constants of three nonidentical coupled
microstrip lines shown in Fig. 5 with w1 = 0.15 mm, w2 = 0.3 mm,
w3 = 0.6 mm, d12 = 0.2 mm, d23 = 0.4 mm, h1 = 0.635 mm, ε1 = 9.8 .
CMT refers to the present coupled-mode theory.

the relative errors for satisfying the relation Zc,11/Zc,21 = Zc,12/Zc,22
were less than 10−2 , whereas the relative errors in the coupled-mode
analysis are achieved less than 10−4 for the total power and partial
power definitions. The characteristic mode impedances at 1 GHz are
plotted in Fig. 11 as functions of the separation distance d and com-
pared with those [7] obtained by the direct spectral domain method.
Both results are in good agreement. It is seen that Zc,11 changes signs
very rapidly for values of d around 16µm. Although this feature has
been discussed in [7] from the viewpoint of numerical analysis, we can
obtain a clear physical interpretation using the coupled-mode analysis.
When two lines are well separated, the solutions of Eq. (7) yield that
a11 > 0 , a21 > 0 , a12 < 0 , and a22 > 0 . Then the line currents in
modes 1 and 2 flow in the same and opposite directions, respectively,
like the even and odd modes of symmetric lines. When the separation
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(a) Mode 1

(b) Mode 2

(b) Mode 3

Figure 7. Characteristic mode impedances of three nonidentical cou-
pled microstrip lines. The values of parameters are the same as those
in Fig. 6. CMT refers to the present coupled-mode theory.
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Figure 8. Cross section of two identical coupled microstrip lines in
dual planes.

Figure 9. Effective dielectric constants of two nonidentical coupled
microstrip lines in dual planes shown in Fig. 8; w1 = w2 = 5µm,
h1 = h2 = 10µm, ε1 = ε2 = 4.0 , and d = 30µm. CMT refers to the
present coupled-mode theory.
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Figure 10. Characteristic mode impedances of two identical coupled
microstrip lines in dual planes for d = 30µm. The values of other
parameters are the same as those in Fig. 9. CMT refers to the present
coupled-mode theory.

Figure 11. Characteristic mode impedances at 1GHz as functions of
separation distance d for two identical coupled microstrip lines in dual
planes. The values of other parameters are the same as those in Fig. 9.
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distance is decreased, the values of a21 , a12 , and a22 do not show
noticeable changes. However the value of a11 decreases rapidly, ap-
proaches to zero at d � 16µm, and change the sign for the further
decrease of the separation distance. It follows that the nature of line
currents for mode 1 is drastically changed at d � 16µm and mode 1
behaves as a odd mode for d

>∼16µm. Referring to Eqs. (20)–(23) or
Eqs. (29)–(32), such an anomalous behavior of mode 1 leads to the
rapid changes in Zc,11 around d = 16µm. The line currents of mode
1 is concentrated in line 2 when d � 16µm. It is noted that rather
than being merely a mathematical approximation, the coupled-mode
theory provides good physical insight regarding the coupling effects.

4. CONCLUDING REMARKS

We have presented a coupled-mode theory for line parameters of mul-
tilayered coupled microstrip lines. The coupled-mode equations for the
amplitudes of line currents have been constituted using the eigenmode
fields and currents of each isolated single line. The elements of the cou-
pling matrix were calculated with the solutions of the spectral domain
method for the isolated single line. The mode propagation constants
and characteristic mode impedances of the coupled lines are easily ob-
tained from the eigenvalues and associated eigenvectors of the coupling
matrix. We have presented two expressions for the characteristic mode
impedances based on the total power definition and the partial power
definition.

The proposed method has been used to analyze the mode propa-
gation constants and characteristic mode impedances for three typical
configurations of coupled microstrip lines. The results show a good
agreement with those obtained by the direct solution method for the
coupled lines.
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