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1. INTRODUCTION

The identification of faulty elements in large (hundreds to thousands
of elements) antenna arrays, e.g., radiotelescopes, from (complex, am-
plitude and phase) field or (real) intensity measurements is a problem
of considerable practical and theoretical relevance [1, 2].

In the simplest case, where only two states are allowed (element on
or off), the state of a faulty array can be represented by a point in the
lattice {0, 1}N , where N is the number of radiators, and the state
“0” and “1” denote a faulty and a working antenna, respectively.

Identifying the (unknown) state of the array amounts to solving a
(factorially complex, and non convex in general) minimization problem
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over the set of all 2N possible array states, where the functional to be
minimized measures the distance between two M -dimensional vectors,
representing the measured data, and the fields (intensities) produced
by the (unknown) state of the array, respectively, at M given mea-
surement points. Depending on whether intensity (easier to perform)
or field measurements are available, the related minimization problem
will be linear and nonlinear, respectively. For the linear (field measure-
ments) case, std. (e.g., Gauss-Seidel [3]) methods would be plagued by
ill-conditioning especially as the distance between the source and the
measurement plane is increased [1]. For the nonlinear (intensity mea-
surements) case, naive conjugate-gradient (henceforth CG) minimiza-
tion algorithms would be prone to trapping by local minima, in view of
the non-convex character of the problem [2]. On the other hand, global
no-derivative minimum-seeking algorithms (e.g., Rosenbröck [4]) might
be quite slow.

Due to these inherent limitations, during the last few years, atten-
tion has been focused on a number of hopefully more effective tools
for (global) minimization problems where many local minima do exist,
including both stochastic (genetic algorithms [5], simulated annealing
[6], Boltzmann machines [6]) and deterministic (mean field neural net-
works [7]) methods.

In this paper we adopt, for the first time, to the best of our knowl-
edge, a discrete (asynchronous) version of Vidyasagar [8] (originally
continuous) mean field neural network, to attack the (binary) array
faulty element identification problem. Vidyasagar net can be regarded
as a mean-field version of Boltzmann machine. We show that the net
(as well as its discrete version used here) is totally stable, evolving
to the stationary points of a (weak) Lyapounov function, but for a
set of initial conditions of measure zero. We further prove that under
suitable (sufficient) assumptions for the involved threshold function,
the above Lyapounov function has a unique minimum, which coincides
with the sought global minimum of the functional to be minimized on
the lattice {0, 1}N . A number of critical technical issues (computa-
tion of the multilinear energy polynomial [9], optimum choice of the
weights, and of the updating schedule of the threshold parameter [10])
are discussed.

The performance of the algorithm is investigated for various values
of the ratio d/D, d being the distance between the source and the
measurement plane, and D the array and measurement domain diam-
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eter. It is shown that a judicious choice of the weights leads in a few
steps to the correct solution with probability close to one as d/D → 0.
The algorithm is shown to be at least as robust as the smartest local-
trap-avoiding CG algorithms [11] w.r.t both additive (gaussian) noise
in the measurements, and random errors in the assumed radiators’
positions, while being overall considerably faster and more reliable.

The remaining of the paper is organized as follows. In Section 2
the minimization problem is set up. In Section 3 the (continuous and
discrete asynchronous) Vidyasagar network is introduced, and its con-
vergency properties are discussed. In Section 4 a discrete asynchronous
implementation of the proposed net is proposed. In Section 5 a number
of technical implementation issues are highlighted. Numerical exper-
iments are presented in Section 6. Conclusions follow under Section
7. In Appendix A and B optimum updating schedules for the neural
threshold parameter are discussed in detail.

2. ANTENNA ARRAY DIAGNOSTICS FROM LINEAR
AND NON-LINEAR MEASUREMENTS

The following functionals are to be minimized according to whether
field or intensity measurements are available:

f(�s) =
M∑

r=1

αr

∣∣∣∣∣

[
N∑

i=1

�Ei(�xr)si

]
− �E(�xr)

∣∣∣∣∣

2

, (1)

f(�s) =
M∑

r=1

αr






N,N∑

i=1,j=1

�Ei(�xr) · �E∗
j (�xr)sisj − I(�xr)






2

, (2)

where �s = {s1, . . . , sN} ∈ {0, 1}N represents the (unknown) state of
the array; {�xr}M

r=1 is the set of measurement positions, �E(�xr) are
the (complex, frequency domain) measured field values, I(�xr) are the
(real) measured field-intensity values, and �Ei(�xr) are the (complex,
frequency domain) fields produced by the i-th radiator. The αr ’s
denote the relative weights of the r-th measurement, and ∗ denotes
complex conjugation.

By noting that if �s ∈ {0, 1}N then si = sq
i , ∀q ∈ ℵ, the functions

f(�s) in (1), (2) can be rewritten as multilinear (2nd and 4th order,
respectively) polynomials in s1, . . . , sN taking on the same values as
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f(�s) on the points of the lattice {0, 1}N , viz.:

H(�s) =
Q∑

p=1

1,...,N∑

i1,...,1p

W
(p)
i1,...,ip

si1si2 · . . . · sip , (3)

where Q = 2 or 4 according to whether one refers to (1) or (2). These
polynomials will be henceforth denoted as H(�s)1 . As seen from (1),
(2), the polynomial H(�s), can be written as follows:

H(�s) = H0(�s) + Hm(�s) (4)

where only Hm(·) depends on the measurements, and is a (homoge-
neous) function of degree one or two, in �s, according to whether one
refers to (1) or (2). A similar splitting obviously applies to the W (n)

matrices defined in (3) as well, viz.:

W (n) = W
(n)
0 + W (n)

m . (5)

In order to find the minimum of f(s) in {0, 1}N , one can use the
simulated annealing technique [6], whereby to each transition between
nodes of {0, 1}N one associates a (Boltzmann) probability, depend-
ing on the associated variation of H, and a control parameter β−1

(the so called temperature) which is decreased during the process ac-
cording to a suitable schedule. An alternative implementation of sim-
ulated annealing is the stochastic Boltzmann-machine neural-network
[7]. Simulated annealing, however, can be pretty slow, the associated
computational burden being exponential with the problem size. In or-
der to speed-up the computation, it has been suggested to evolve the
statistical average of the state, instead of the state itself, computed
Boltzmann or some other likely suitable distribution law. The result-
ing mean-field neural-network can be quite faster. Loosely speaking,
the above averaging procedure wipes out the many local (irrelevant)
minima, leaving only one fixed point, which hopefully corresponds to
the sought global minimum of f(s) on the state lattice2 .
1 A constructive procedure for computing this latter is given in [9].
2 It should be noted that while the annealing procedure and its sto-chastic

Boltzmann-machine implementation can be proven to converge with probability one

to the global minimum in the limit of an infinite number of transitions, provided

the temperature is decreased no faster than logarithmically [6], a similar conver-

gency theorem for the mean-field neural network does not exist, to the best of our

knowledge. Convergency (in probability) is however observed in a wide variety of

applications [8], including the examples discussed below
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3. NEURAL NETWORK PROPERTIES

The non-linear mean field neural network, introduced by M.
Vidyasagar [8] and used in this paper is described by:






dui

dt
+ ui = −∂H

∂si
,

si = g(βui), i = 1, . . . , N,

(6)

where H(·) is the multilinear polynomial defined above, �u and �s
denote the potential and the state of the net, respectively3 , g(·) is a
strictly increasing C∞ threshold function such that:

lim
x→−∞

g(x) = 0, lim
x→+∞

g(x) = 1, g(0) = g′(0) = .5, g′(x) > 0,

(7)
and β a (real, non-negative) parameter. In view of (7), one has in
general �s ∈ [0, 1]N , whereas for any finite β,�s ∈ [0, 1]N .

The main abstract properties of (6) can be established as follows.

Lemma I - All solutions of (6) are contained in a sphere of RN with
radius R < ∞.

Proof - This follows from a theorem of Cohen and Grossberg [12],
whose assumptions are verified ad abundantiam in view of the proper-
ties of H(·) and g(·). •

Lemma II - The function

Λ(�s) = H(�s) +
N∑

i=1

β−1

∫ si

0
g−1(v)dv, �s ∈ UN = [0, 1]N (8)

is a (weak) Lyapounov function.

Proof - The function Λ(�s) as defined by (8) is continuous and defined
in a bounded set, in view of Lemma I. Accordingly, its level-sets

{�s ∈ UN |Λ(�s) ≤ c}, (9)

3 Note that the si in (6) can take any value in [0, 1] .
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are compact ∀c ∈ R. Further,

dΛ(�s)
dt

= −β−1
N∑

i=1

d

dsi
[g−1(si)]

(
dsi

dt

)2

≤ 0, (10)

as seen from (6), since g(·) is an increasing function. •

Lemma III - The minima of Λ(�s) in UN coincide with those of H(�s)
in the limit β → ∞.

Proof - This follows immediately from (8). •

Lemma IV - The minima of H(�s) in UN are located on {0, 1}N ,
where, by construction H(�s) = f(�s).

Proof - This follows trivially from Weierstrass theorem, since the func-
tion: H(·) is linear in si ∀i and hence its second derivative w.r.t si

vanishes identically. •

Lemma V - The stationary points of Λ where ∇Λ = 0 form an
invariant set Z, i.e., every solution of (6) with initial value �u0 ∈ Z
remains in Z, ∀t.

Proof - This follows from the fact that the stationary points of Λ are
the (only) fixed points of (6), where:

si − g

(
−β

∂H

∂si

)
= 0, i = 1, 2, . . . , N. • (11)

Lemma VI - The Ω-limit set4 of (6) is a subset of the invariant set
Z referred in Lemma V.

Proof - This follows from LaSalle theorem [13] in view of the (al-
ready verified) assumptions that i) all solutions of (6) remain bounded

4 We recall that [14] the Ω-limit set is the collection of ω-limit points of (6).
These latter are those points �uω ∈ RN such that ∃ a solution �u(t) of (6) and a
sequence {tk}∞k=1 such that

lim
k→∞

tk = +∞, lim
k→∞

�u(tk) = �uω.
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(Lemma I), and ii) a (weak) Lyapounov function exists (Lemma II)
for (6). •
As a consequence of the above lemmas, we can conclude that:

Theorem I - The solutions of (6) converge in the limit as t → ∞ to
the minima of Λ in UN , but for a set of initial conditions of measure
zero. The minima of Λ in UN in the limit as β → ∞, are located
on {0, 1}N , (and are thus isolated) and coincide with the minima5 of
H(�s) and f(�s).

Proof - The first statement follows immediately from Lemma VI. The
second one is a direct consequence of Lemmas III and IV. •
We are now in a position to show that, under suitable assumptions
for g(·), Λ(·) has a unique stationary point. To this end we need a
number of preliminary results.

Definition I - We define the Leray-Schauder index of a function F ∈
C1 : A ⊂ CN → CN as follows:

iLS(F, A) :=
M∑

k=1

sgn{det [I −∇F}�s=�sk
] , (12)

where {�sk}M
k=1 are the fixed points of F in A, i.e., the (regular6 )

solutions of:

�sk − F (�sk) = 0, k = 1, 2, . . . , M. • (13)

Lemma VII (Leray-Schauder global continuity principle [15]) - Let
G : [β1, β2] × �A ⊂ R× CN → X ⊂ CN a compact operator, and A a
bounded open set in a complex Banach space. Then, if i) �s−G(β,�s) =
0 has no solution in [β1, β2] × ∂A, and ii) iLS [G(β1, ·), A] �= 0, then
the Leray-Schauder index iLS [G(β, ·), A] is constant in [β1, β2].

5 Following [8] a point �s0 ∈ {0, 1}N is called a local minimum of f(�s) iff

f(�s0) ≤ f(�s), ∀�s ∈ I(�s0)

where I(�s0) = {�s | DH(�s,�s0) = 1}, DH being the Hamming distance [8].
6 These are the solutions of (13) where det[I −∇F ] �= 0.
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Proof - The proof of this lemma can be found, e.g., in [15]. •

Lemma VIII - The Leray-Schauder index of the operator:

�F (β,�s) =
{

g

(
−β

∂H

∂si

)}N

i=1

, (14)

in A : [0, 1]N ⊆ A ⊂ CN is equal to one.

Proof - By Definition I, one has:

iLS [�F (0,�s), A] =
M∑

i=1

sgn
{

det
[
I −∇�s

�F (0,�s)
]

�s=�σi

}
(15)

where {�σi}M
i=1 are the fixed points of F in A . However, for β = 0

there is only one fixed point of F, given by �σ = 0.5û, where û is the
N -dimensional vector with unitary components. Hence:

iLS

[
�F (0,�s), A

]
= sgn

{
det

[
I −∇�s

�F (0,�s)
]

�s=0.5û

}
(16)

On the other hand, ∇�s
�F (0,�s) vanishes for β = 0. Hence:

iLS [�F (0,�s), A] = sgn {det[I]} = 1. • (17)

Lemma IX - If for a suitable choice of g(·), ∃ an open bounded set
A : [0, 1]N ⊆ A ⊂ CN such that ∀�s ∈ ∂A, ∀β ∈ R+, �F (β,�s) �= �s, then
iLS [�F (β,�s), A] = iLS [�F (0,�s), A] = 1.

Proof - This follows immediately from Lemma VII. •
Under the same assumptions of Lemma IX we can prove the following
two Lemmas:

Lemma X - The number of fixed points of �F in an open bounded set
A : [0, 1]N ⊆ A ⊂ CN is equal to one.

Proof - In view of the properties of g(·) and H(·), the operator �F
is analytic and compact in A : [0, 1]N ⊆ A ⊂ CN . Furthermore, by
the hypotheses of Lemma IX, it has no fixed points in ∂A,∀β ∈ R+.
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Then, By Cronin-Schwartz theorem [15] the number of fixed points of
�F in A cannot exceed the Leray-Schauder index iLS [�F (β,�s), A] = 1.

On the other hand, �F has at least one fixed point in A, and hence it
has exactly one fixed point. •

Lemma XI - The Lyapounov function Λ(·) has only one stationary
point.

Proof - This follows immediately from Lemma V. •
The above Lemmas, in turn, can be used to prove that

Theorem II - In the limit as β → ∞ the above unique minimum of
Λ(·) coincides with the global minimum of f(·) in {0, 1}N .

Proof - Let �s0 the unique minimum of Λ, which, in view of Lemma
V will be located on {0, 1}N , as β → ∞. In view of (8) one has:

lim
β→∞

Λ(�s0) = f(�s0). (18)

Now we proceed per absurdum, and assume that ∃�s ′ �= �s0 in {0, 1}N ,
and is the global minimum of f(·), so that:

f(�s0) > f(�s′). (19)

However, in view of (8), one has also

lim
β→∞

Λ(�s ′) = f(�s ′) =⇒ lim
β→∞

Λ(�s0) > lim
β→∞

Λ(�s ′), (20)

which contradicts the hypotheses. •
Note that the conditions on g(·) in Lemma IX are only sufficient,

and might be by far too restrictive. The corresponding necessary con-
ditions are not known. As a matter of fact, no constructive procedure
is available to find out/construct such a function. On the other hand,
all smooth step-like functions verifying (7) are natural candidates7 . In
practice, for any possible choice of g(·) a critical value β∗ is observed
such that for β > β∗ convergency of the algorithm described in Section

7 These later include, e.g., g(v) = 0.5[1 + erf(v)] and g(v) = .5[1 + tanh(v)],

as well as many cumulative distribution functions.
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3 breaks down. Better choices of g(·) correspond to larger values of
β∗. Numerical experiments collected in Section 6 were obtained using
g(v) = .5 · [1 + tanh(v)]. We are currently investigating alternative,
hopefully better, choices.

4. DISCRETE IMPLEMENTATION

The possibly simplest discrete numerical implementation of (6) is:




u

(n+1)
i = (1 − ∆)u(n)

i − ∆
(

∂H

∂si

)

�s=�s(n)

,

s
(n)
i = g[βu

(n)
i ], i = 1, . . . , N ; n = 1, 2, . . .

(21)

The above discretization is consistent in the sense that one can im-
mediately prove that any stationary point of (21) is also a fixed point
of (6) and vice-versa. We shall now sketch the proof of the discrete
versions of Lemmas I and II.

Lemma XII - The trajectories of the discrete neural network (21) are
bounded.

Proof - Let r(n) = |u(n)|2. Then, the gradient of H being bounded
by M,

r(n+1) − r(n) ≤
N∑

i=1

∆(2−∆)[u(n)
i ]2 +2M∆|1−∆||u(n)

i |+M2∆2. (22)

If 0 < ∆ < 2, all solutions are contained in a ball of radius 2∆(2 −
∆)−1M, the l.h.s. of (22) being negative outside. •
We are now in a position to prove that:

Lemma XIII - The asynchronous implementation of (21) allows to
defined a (weak) Lyapounov function.

Proof - We define a weak Lyapunov’s function Λ by analogy with
the continuous case. In order to prove that the variation of Λ after
updating the i-th state only is negative, we note that:

Λ(�s(n+1)) − Λ(�s(n)) =
(

∂H

∂si

)

�s=�s(n)

(
s
(n+1)
i − s

(n)
i

)

+
1
β

∫ s
(n+1)
i

s
(n)
i

g−1(s)ds. (23)
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From Bolzano theorem8 , ∃t ∈ [0, 1] :

∫ s
(n+1)
i

s
(n)
i

g−1(s)ds = (1 − t)
(
s
(n+1)
i − s

(n)
i

)
g−1(s(n)

i )

+ t
(
s
(n+1)
i − s

(n)
i

)
g−1(s(n+1)

i ), (24)

whence:

Λ(�s(n+1)) − Λ(�s(n)) (25)

=
(
t − ∆−1

)
β−1 ·

{
g−1(s(n+1)

i ) − g−1(s(n)
i )

} (
s
(n+1)
i − s

(n)
i

)
.

In view of the monotonic nature of g(·), the Lyapunov function de-
creases iff t−∆−1 ≤ 0, i.e., iff ∆ ∈ (0, 1). Furthermore, (25) implies:

−∆−1β−1
{

g−1(s(n+1)
i ) − g−1(s(n)

i )
} (

s
(n+1)
i − s

(n)
i

)

≤ Λ(�s(n+1)) − Λ(�s(n))

≤ ∆ − 1
∆

β−1
{

g−1(s(n+1)
i ) − g−1(s(n)

i )
} (

s
(n+1)
i − s

(n)
i

)
. • (26)

Lemmas III to VI are obviously still valid, and thus a discrete version
of Theorem I follows. On the other hand, Lemmas VII to XI are still
valid, and Theorem II follows.

5. IMPLEMENTATION HINTS

In the following we touch briefly the problem of the choice of the param-
eters β and {αr}M

r=1. The general problem of determining the transi-
tion range (βmin, βmax), which corresponds to the onset and comple-
tion of the migration of the sought fixed point of (6) from si ≈ 0.5 to

8 We use also the more or less obvious result that for any φ : R → R continuous
and non-decreasing one has:

φ(si)(si+1 − si) ≤
∫ si+1

si

φ(s)ds ≤ φ(si+1)(si+1 − si),

which follows trivially from the hypothesis using the integral mean value theorem.
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{0, 1}N has been discussed in [10]. For the linear (field measurement)
case, we let (see Appendix A for details):

βmin = 2




maxi




N∑

j=1

∣∣∣∣
∂2H

∂si∂sj

∣∣∣∣










−1

, (27)

βmed = 2
{

maxi�=j

(∣∣∣∣
∂2H

∂si∂sj

∣∣∣∣

)}−1

, (28)

βmax = 2
{

mini�=j

(∣∣∣∣
∂2H

∂si∂sj

∣∣∣∣

)}−1

. (29)

The computationally cheapest strategy was found to be that of evolving
the system according to the rule:

βi = βmin + (i − 1)(βmed − βmin), (30)

starting from sk = .5 at i = 1, and iterating the procedure until all
states are saturated. Note that this usually occurs far before βmax is
reached.

We adopted a similar schedule also for the nonlinear case, where the
Hessian components depend on �s, by letting (see Appendix B):

βmin = 2




maxi




N∑

j=1

∣∣∣∣
∂2H

∂si∂sj

∣∣∣∣










−1

�s=0.5û

(31)

βmed = 2
{

c maxi�=j

(∣∣∣∣
∂2H

∂si∂sj

∣∣∣∣

)}−1

�s=�0

. (32)

βmax = 2
{

c mini�=j

(∣∣∣∣
∂2H

∂si∂sj

∣∣∣∣

)}−1

�s=�0

, (33)

where:

c =
{

D[g−1(s3)]
D[g−1(s)]

}

sq=1/2

, (34)

D[·] being the derivative operator.
A further degree of freedom in the algorithm is related to the choice

of the weight factors {αr}M
r=1 in (1), (2). Two main alternative philoso-

phies can be envisaged, namely measurement normalization, viz.:

αr = |�E(�xr)|−2, r = 1, 2, . . . , M, (35)
αr = I(�xr)−2, r = 1, 2, . . . , M, (36)
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(to be used in (1) and (2) respectively) and operator normalization,
viz.:

αr =

[
N∑

i=1

|�Ei(�xr)|2
]−1

, r = 1, 2, . . . , M, (37)

αr =




N∑

i=1,j=1

|�Ei(�xr) · �E∗
j (�xr)|2




−1

, r = 1, 2, . . . , M, (38)

(to be used in (1) and (2) respectively). Numerical experiments show
that measurement normalization performs rather poorly. All results
presented in the next section refer accordingly to operator normaliza-
tion.

6. NUMERICAL RESULTS

In this section we shall focus on the special (numerically harder) case of
intensity measurements. Results pertinent to the field-measurements
case have been published elsewhere [16]. The proposed algorithm has
been probed under several operating conditions, and compared to a
benchmark smart (trap-avoiding) CG code [11]. The performance of
the algorithm can be gauged from its success rate (fraction of correct
faulty-element(s) identifications, over 104 trial array states randomly
generated from a prescribed value of the single-radiator fault proba-
bility PF ). Our (and any) diagnostic algorithm will fail if the number
of radiators N exceeds the number Nc of degrees of freedom of the
measured field, viz. [17]:

N ≥ Nc =
2
π

(k0Ra)
Rm

d
, (39)

where Ra and Rm are the (minimum) radii of the antenna and mea-
surement domains, respectively, d is the (minimum) distance between
the two, and k0 = 2π/λ0 the free-space wavenumber. In all re-
ferred numerical experiments we took Ra = Rm = D/2, and λ0/2-
equispaced radiators, so that D = Nλ0/2. Hence:

N

Nc
=

2d

D
≤ 1. (40)
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Figure 1. Success rate vs. 2d/D (ratio between the number of
unknowns and the number of field degrees of freedom).

The typical dependence of the success rate from N/Nc = 2d/D is dis-
played in Fig. 1. As expected, the success-rate drops down steeply to
zero as soon as 2d/D ≈ 1, i.e., as N ≈ Nc, while keeping essentially
equal to one for 2d/D < 1, i.e., N < Nc. The success rate as a func-
tion of the radiators fault probability PF at different values of 2d/D
is shown in Fig. 2. It is deduced that the proposed algorithm is more
reliable than CG. The robustness of the proposed algorithm is illus-
trated in Figs. 3 and 4. In Fig. 3 the measured data are corrupted by
additive (uncorrelated) gaussian noise and the success rate is displayed
vs. the noise r.m.s value. In Fig. 4, radiators’ positions are affected by
random errors uniformly distributed in (−∆,∆), and the success rate
is displayed vs. ∆/λ0. It is seen that the proposed algorithm is at least
as robust as CG.

We shall now discuss the memory and CPU budgets of the proposed
method.
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Figure 2. Success rate vs. 2d/D (ratio between the number of
unknowns and the number of field degrees of freedom).

Figure 3. Noisy measurements. Success rate vs. (scaled) r.m.s. noise.
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Figure 4. Random (uniform) displaced sources. Success rate vs. scaled
maximum displacement.

Given the array geometry and the (nominal) feeding currents, the
measurement-independent multilinear polynomial H0(�s) i.e., the com-
pletely symmetric matrices W

(n)
0 , n = 1, 2, 3, 4 in (5) can be computed

and stored once and for all (step-0). The related CPU and memory
budgets scale-up as M · N4 and N4, respectively. Whenever a set
of measured intensities is available for diagnostics, the measurement-
dependent polynomial Hm(·), i.e., the completely symmetric matrices
W

(n)
m , n = 1, 2 can be computed first (step-1). The related CPU and

memory budgets scale-up, respectively, as M ·N2 and N2. Then, the
neural net can be evolved until a fixed point is reached, using a suit-
able threshold parameter updating schedule (step-2). Each iteration
of (18) requires O(N3) floating-point operations. The typical number
of iterations required does not exceed 102 for N ≤ 103.

It is understood that the maximum tractable array size turns out
to be essentially limited by the amount of available memory in step-0.
For a top-end desktop workstation N ∼ 103. Note that this limitation
applies, e.g., to CG techniques as well. On the other hand, the overall
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Figure 5. Neural network run-time vs. number of antennas on a
P200pro desktop workstation.

diagnostic algorithm burden can be identified with that required to
evolve the discrete neural-net (21).

Typical running times are exemplified in Fig. 5, which refers to a
P200Pro desktop-WS under WIN95. Relative computing times (scaled
to their values at PF = 0.50 as functions of the radiators fault prob-
ability PF at different values of 2d/D are shown in Fig. 6. It is seen
that the proposed algorithm compares favorably with std (CG) tech-
niques not only in terms of robustness and reliability, but also in terms
of speed.

7. CONCLUSIONS - HINTS FOR FUTURE RESEARCH

We presented an efficient framework for faulty elements identification
in large antenna arrays, based on discrete asynchronous mean field
neural network, and compared its performance to std. (CG) tech-
niques. We are presently investigating the issue of parallelization of
(21) through a study of the properties of the corresponding pipelined
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Figure 6. Relative run-time vs. radiator fault probability, at various
values of 2d/D.

and fully-synchronous implementations. A less trivial extension is re-
quired to cover the case where each radiator can be in several different
states (e.g., steerable arrays using stepped phase shifters or attenua-
tors).

APPENDIX A - RELEVANT TO EQS. (25), (27)

In this Appendix we derive eqs. (27)–(29), for the special case of field
measurements.

For linear measurements, one can capitalize on Laplace transform.
This can be done in two paradigm cases. The first case is: i) when
all states are unsaturated. In this case, by Gerschgorin theorem [18],
the poles of the associated Laplace transform lie in circles with centers
(−1, 0) and radii ri = .5β

∑
j |Wij |. Hence, if
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.5β
∑

j |Wij | < 1,

i = 1, 2, · · · , N
=⇒

β < 2 1∑
j
|Wij |

,

i = 1, 2, · · · , N,

no pole belongs to the right complex half-plane. This condition is
certainly verified if:

β < 2 mini

[
1∑

j |Wij |

]
=

2
maxi

∑
j |Wij |

; (A1)

We denote the last value as βmin, viz.:

βmin =
2

maxi
∑

j |Wij |
, (A2)

such that for β < βmin all poles lie in the left half-plane.
On the other hand, consider case ii) where all states but two (p

and q) are already saturated9 . In this case, the poles of the relevant
Laplace transform are:

λp,q = −1 ± .5β|Wpq|. (A3)

One of the above poles is always in the left half-plane. THe other one
belongs to the right half-plane if:

.5β|Wpq| > 1, =⇒ β >
2

|Wpq|
. (A4)

This condition is certainly verified if:

β > maxp,q
2

|Wpq|
=

2
minp,q|Wpq|

, p �= q. (A5)

We denote the last value as βmax, viz.:

βmax =
2

minp,q|Wpq|
, (A6)

such that for β > βmax all poles but one lie in the right half-plane.

9 Note that if only one state is unsaturated, the corresponding dynamical

evolution is trivially s = s0e−t.
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In practice, it is more convenient to introduce an intermediate value
βmed,

βmed =
2

maxp,q|Wpq|
, (A7)

such that, for β < βmed it is impossible that given n − 2 saturated
states, one of the unsaturated two might saturate.

The following simple strategy can be thus envisaged: evolving the
system according to the rule:

βi = βmin + (i − 1)(βmed − βmin), (A8)

starting from sk = .5 at i = 1, and iterating the procedure until all
states are saturated. This usually occurs far before βmax is reached.

APPENDIX B - RELEVANT TO EQS. (29), (31)

In this Appendix we deduce eqs. (31)–(33), for the special case of in-
tensity measurements, where H(�s) is a multinomial operator of fourth
degree, and eq. (6) reads explicitly10 :






duq

dt
+ uq = − 4

1...N∑

i,j,k

W
(4)
ijkqsisjsk − 3

1...N∑

i,j

W
(3)
ijq sisj

− 2
1...N∑

i

W
(2)
iq si − W (1)

q ,

uq = β−1g−1(sq), q = 1, 2, . . . , N.

(B1)

Assuming all states to be saturated, with the exception of states p, q,
the r.h.s. of (B1) can be expanded to first order11 in a neighborhood
of sr = .5. In doing so for the unsaturated states, we use the first
order binomial expansion:

sn
r = 2−n + 2−n+1n(sr − 2−1), (B2)

while for the saturated states, we use the obvious identities

sp
k = sk, ∀p ∈ ℵ. (B3)

10 It is always possible to assume the W (n) matrices, n = 1, 2, 3, 4, to be

completely symmetrical w.r.t permutations among the indexes.
11 Note that, H(�s) being multilinear, ∂H/∂sq does not depend on sq at all.
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Hence:





duq

dt
+ uq = − 4

1...N∑

i,j,k

(W (4)
ijkqδir + W

(4)
ijkqδjr + W

(4)
ijkqδkr)sisjsk

− 3
1...N∑

i,j,k

(W (3)
ikq δirδkj + W

(3)
ikq δjrδik)sksisj

− 8
3

1...N∑

i,j,k

W (2)
rq δirδjrδkrsisjsk − 1

3
W (1)

q ,

uq = β−1g−1(sq), q = 1, 2, . . . , N,

(B4)

where δrs is the Kronecker symbol. Next we define:

Uq = β−1g−1(s3
q), (B5)

where sq is an unsaturated state. Expansion of the second eq. in (B4)
and of eq. (B5) in a neighborhood of sq = 0.5 gives:

uq − β−1g−1(.5) = β−1D
[
g−1(sq)

]
sq=0.5

(sq − .5), (B6)

and

Uq − β−1g−1(.125) =
3
4
β−1D

[
g−1(s3

q)
]
sq=0.5

(sq − .5), (B7)

whence:
uq − β−1g−1(1/2)
Uq − β−1g−1(1/8)

=
4
3

{
D[g−1(sq)]
D[g−1(s3

q)]

}

sq=1/2

, (B8)

where D[·] is the derivative operator. Differentiating in time eqs. (B6)
and (B7), and comparing the resulting identities, we further get:

duq

dt
dUq

dt

=
4
3

{
D[g−1(sq)]
D[g−1(s3

q)]

}

sq=1/2

. (B9)

Using eqs. (B9) and (B8) in (B4) gives:





dUq

dt
+ Uq = T ijk

q sisjsk + hq,

Uq = β−1g−1(s3
q),

(B10)
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where:

T ijk
q = − 3c(W (4)

i,jkqδir + W
(4)
ijkqδjr + W

(4)
ijkqδkr)

− (9c/4)(W (3)
ikq δirδkj + W

(3)
ikq δjrδik) − 2cW (2)

rq δirδjrδkr, (B11)

and:

c =

{
D[g−1(s3

q)]
D[g−1(sq)]

}

sq=1/2

, (B12)

hq being an irrelevant constant. Equation (B10) can be regarded as a
linear neural net in the compound state sijk = sisjsk. Little thought
reveals that the net (B10) and (6) converge (or not) together. Thus,
we can compute βmed and βmax for the linear network (B10), using
eqs. (28) and (29). Hence:

βmax =
2

mini,j,k �=q|T ijk
q |

, (B13)

and:
βmed =

2

maxi,j,k �=q|T ijk
q |

. (B14)

Restricting to the diagonal states i = j = k = h, one finally gets, in
view of (B11),

βmax =
1

c minh �=q|W (2)
h,q |

, (B15)

and:
βmed =

1

c maxh �=q|W (2)
h,q |

. (B16)
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