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1. INTRODUCTION

The analysis of open resonators consisting of two parallel orthogonal
parallelepiped conductors has been among the first to be carried out
by computer techniques, approximately 40 years ago [1]. The semi-
open nature of the parallel plate resonator eliminates large number of
possible modes, which would be rapidly damped by the radiation from
the open sides [2], keeping only longitudinal resonances. This fact has
played an essential role in the development of laser systems at optical
frequencies and the construction of active quantum electronic devices.
The system of parallel plate reflectors has been used for very long in
the classical Fabry-Perot interferometer [3] and this is why it is usually
referred to as Fabry-Perot resonator. Indeed, Fabry-Perot interferome-
ters of a metal-dielectric-metal configuration have been widely used as
bandpass optical filters and laser resonators [4-6]. Recently, there has
been a continuously increasing interest of using Fabry-Perot structures
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as a wavemeter at microwave and millimetre wavelength frequencies
[7-10], as well as to determine the material properties of high tem-
perature superconductors [11-16]. Similar open type structures are
proposed to be used at sub-millimetre wavelengths where, contrary
to the optical wavelengths, the resonator dimensions are comparable
to the operation wavelengths. In this case, it is required to compute
the resonance properties of low order modes in the Fabry-Perot type
structures. The same statements are valid for optical microresonators
where, again, low order modes are employed.

In this paper, an open resonator of the type shown in Figure 1(a),
consisting of two equal parallel plates and excited by an elementary
dipole parallel to the plates, is examined. This structure is directly re-
lated to the famous Casimir effect [17, 18], which exhibits the vacuum
energy of the electromagnetic field as a weak attraction force between
two uncharged perfectly conducting plates very close to each other.
The existence of this force, which is linked with fundamental concepts
of physics, such as virtual particles and zero energy fluctuations, has
recently re-attracted much interest and was confirmed by a very accu-
rately designed experiment by Lamoreaux [19].

The analysed structure shown in Figure 1(a) is derived as a spe-
cial case of the Q-number of perfectly conducting parallel rectangular
plates—or equivalently the case of Q-number of rectangular apertures
“cut” on parallel infinite screens—shown in Figure 1(b). Actually, this
multi-plate problem has been addressed in a series of papers [20-22],
by extending the work presented in [23] for a single rectangular con-
ducting plate and using High Performance Computing (HPC) merely
as a computational tool to reduce drastically the consumed CPU time.
Therefore, according to the pursued analysis, the two plates shown in
Figure 1(a) could be displaced and/or not necessarily of the same di-
mensions. Furthermore, the pursued analysis can be easily extended to
the case of multi Fabry-Perot resonators, taking into account coupling
phenomena between closely spaced resonators.

In section 2, the formulation of the multi-plate problem is presented
and a system of coupled integral equations is derived in terms of the
conductivity currents induced on the parallel displaced rectangular
conducting plates surfaces. The system of integral equations is solved
in section 3, using a Method of Moments (MoM) and in particular a
Galerkin technique. Entire domain Chebyshev type basis functions in-
corporating the current edge behaviour [24], which have been proved
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very efficient in previous works [23, 25|, are employed to describe the
unknown currents on the plates. Numerical results are presented in
section 4 for several resonator sizes and operation frequencies, while
concluding remarks and topics for further work are given in section 5.

In the following, an exp(jwt) time dependence is assumed and sup-
pressed throughout the analysis. The main emphasis is given to near-
field quantities, such as the conductivity currents distribution on the
plates surface.

2. FORMULATION OF THE INTEGRAL EQUATIONS

The analysis presented in [23] is extended for the case of Q-number
of perfectly conducting infinitesimal thickness plates, placed at arbi-
trary positions and orientations on parallel planes—or equivalently the
case of Q-number of rectangular apertures “cut” on parallel infinite
screens—as shown in Figure 1(b), which are illuminated by an exter-
nal source with known pattern. For the purpose of the present analysis,
the multi-plate structure is illuminated by a primary field

Ey(r,rg) = med - G(r, 1) (1)

which is created by a parallel to the zy-plane Hertzian dipole, with
orientation vector

& = cos psX + sin 5y 0<¢s<2m (2)
position vector
Ty = (x()ay()?é) — 00 < Zp, Yo < +00 (3)

and electric moment my = I¢, ¢ being the dipole length and I being
the constant current flowing on the dipole surface. Alternatively, for a
plane wave incidence, the primary field is given by

Ey(r) = Eoé exp(—jkok; - 1) (4)

where & = (cos el + sin py) sin 6, + cosf.z and l;‘2 = kl‘;ﬁc + kf;fﬁ—
k! %z are the unit vectors denoting the polarisation and incidence direc-
tions respectively and Fy is the assumed unit plane wave amplitude.

Applying the Green’s theorem, the electric field is expressed as a
summation of the primary excitation E(r) (Hertzian dipole or plane
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wave given by eqgs (1) or (4) respectively) and its distortions due to the
presence of the conducting plates, as

E(r,ro) = Ey(r,10) — jwpto / / driG(r,r) - J,(r])
Ay
— jwpo / / dryG(r,rh) - Jo(rh)
Ay
— ... = jwho //dzgg(z, o) - L, (1)
Aq

. jwp / / Ay G(r, vly) - Jo (1) (5)

Aq

where the negative sign of the right hand side terms is due to the
exp(+jwt) time dependence, A, = a4, X by, (¢ = 1,2,...,Q) is the
finite zero-thickness g-th conducting plate surface, r, = (g, v, 24 =
0) denotes the position vector of an arbitrary point on A, with respect
to the local cartesian coordinates system attached to the g¢-th plate
centre of gravity, J, (ffl) denotes the unknown current density on the

g-th plate and

exp(—jkolr — ryl)

G(r,ry) = (L+ ky*VV) (6)

drlr — 1)
is the free-space dyadic Green’s function, which satisfies the wave equa-
tion

V x V x G(r,ry) = kg (r)G(r,ry) = I6(r — 7)) (7)

ko = wy/Eopo being the free space propagation constant, w being the
angular frequency, I = % + 9§ + 22 being the unit dyadic and §(r)
being the three-dimensional delta function.

If the observation point is placed on each conductor surface A, =
aq X by and the short circuit boundary conditions 2 x E(r,) = 0 are
satisfied, a system of Q-two-dimensional integral equations is derived
in terms of the currents J, = Jg, & + Jg, 4, as

Q
S [[aE ) 1) =B p=12.0.@) )

=1
q A,
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where the subscript ¢ (¢ = 1,2,...,Q), wherever used, denotes the
g-th plate, qu are known kernel matrix functions incorporating the
free-space dyadic Green’s function and the known right hand vectors
R, describe the primary excitation impact. The form of the qu
kernel functions depend exclusively on the geometry of the structure
(i.e., the dimensions and the relative position of the plates), while the
R, right hand functions depend on the type of the external source.

3. SOLUTION VIA ENTIRE DOMAIN GALERKIN
TECHNIQUE

The system of integral equations (8) is solved by employing an en-
tire domain Galerkin technique [26], where the unknown vector quan-
tities J,(r) should be expanded in terms of linearly independent
“appropriate” basis functions [24-29]. To this end, Chebyshev type
series with convenient arguments, incorporating the current edge be-
haviour, which have been proved very efficient in previous works [23,
25], are employed. Therefore, with respect to the local cartesian coor-
dinates system (z4,y,), attached to the g¢-th plate centre of gravity
(¢ =1,2,...,Q), the corresponding transverse conductivity currents
are expressed as

Ja.(rq) = 5(%q, Yq Z Z Canm Panm (Tq: Yq)

n=0m=0

S (B)n () o

n=0m=0 g

J‘h (iq) = Z Z Qnm'_'qum ‘Z.q?yQ)

l‘
Q7yq n=0m=0

S () () e
s(q, Yq) 71—0 m—0 bq q

where T, and U, are the n-th order Chebyshev polynomials of the

first and second kind respectively, whose arguments are chosen in a way

that the appropriate stationary waves are developed on the conducting

plates surfaces,

1 — (2x4/aq)?

s(xq,yq) = = (20, /b0)? (¢g=1,2,...,Q) (10)
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is a square root term, which satisfies [30-32] the edge conditions [24] at
xrq = taq/2, yq = £by/2, accelerating significantly the convergence
of the proposed Galerkin technique [25] and ¢g,,, and dq,, are the
unknown coefficients to be determined.

Taking into consideration the exp(+4jwt) time dependence, the
Fourier expansion of the scalar Green’s function

exp(—jko|r — r! |)
Arlr —r

ql
+oo 400 400

eXp Jk (r—ry)
dk, [dk, [dk. 11
/ / — k2 + je (1)

€*>0+

where k = (kg ky,k.) and k* = kI + k2 + k2 is employed and the
MoM is further applied by multiplying each one of eqs (8) by the vector
quantity

1
@ Lo ! 0% + 75 S ! U
S(xtpyq) n'm (wqa yq)x S(xqqu) n’'m (xquq)y

(n/20715"'7Nq;m/:O)l)""Mq) (12)

and integrating on the ¢-th conducting plate surface 4, (¢ =1,2...,
@) . All the integrals over A, are computed analytically making use
of the formula [33]

+a/2
exp(jwt) a_ .y
. t\/l_i v(2t/a) = 5™ Jy(wa/2) (13.1)
+a/2
/ dt exp(juwt)/T— (2t]a)2Us(2t/a)
—a/2

Jot1(wa/2)

a_ .
_— 1
2™ (v+1) wa/2

(13.2)
Jy(x) being the v-th order cylindrical Bessel function of the first kind,
while, in order to enable the analytical computation of the k,-integrals,

the tangential electric field is assumed to vanish “slightly above” the
g-th conducting plate surface A,, by setting r, = (x4, yq,dq) with
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8 — 0% (¢ =1,2,...,Q). Because of this approximation, all the
derived integrals with respect to the k, variable are of the type

+oo
: f(k2)
El_l)r(]gl+ dk, W exp(jak,) a#0 (14)

—0o0

having poles at the points +q¢ with qg = k:% — k2 - k§ —je, e — 0"
and, therefore, their values are computed by employing the Cauchy
theorem. In each case, the contour is closed depending on the number
« sign. Then, all the double integrals with respect to the variables k,
and k, are numerically computed, after being transformed in cylin-
drical coordinates, as

+oo  +00
/dk /dky_ /dpkpk/dQOk_//dk
E = kp@ + kyy = pr(cos o + sin giy) (15)

In this way, the convergence of the involved integrals has to be exam-
ined only for pp — +oo. As it is shown in [25], the above described
approximation concerning the d, — 0% factor enables also the conver-
gence of the pp-integrals without having noticeable impact on the final
results. Note that, since exponential terms exp(—jtqy) with ¢ > 0 are
included in each of the integrands, in accordance to the exp(jwt) time
dependence and the satisfaction of the radiation condition at infinity,
it is required that

Real (g0) >0 and Imag(qy) <0 with qo=/k3—p; (16)

Finally, after applying the Galerkin technique, a Zqul 2(Ng+1) (My+
1) order linear system of equations is derived, in terms of ¢4, and
d(Inm (q = 17 27 e Q) , as

Zﬂpq-ﬁquHS p=1,2,...,0Q) (17)

where all the involved submatrices are defined in the Mathematical
Appendix, the elements of the unknown vectors cd, = [c, |dq]T are
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the unknown coefficients c¢,,,, and dg,,, to be determined and the
position of each submatrice element is defined by transforming the
double pointers to simple ones. Note that, in all the expressions given
in the Mathematical Appendix, special care has been taken in mak-
ing the proper transformations from each local cartesian coordinates
system attached to the g-th plate centre of gravity —denoted by the
subscript ¢, as (x4, yq, 24)—to a global cartesian coordinates system—
denoted without any subscript, as (z,y, z), taking into account that
the position vector of the ¢-th plate centre of gravity is denoted by
the formula

£2=x25%+y2@+z82 (¢=1,2,...,Q) (18)

with respect to a global system of coordinates (z,y, z) .

The successful choice of the entire domain basis functions leads to
quick convergence and small order systems (i.e., small N,, M, values).
Therefore, the use of indirect methods is not needed and the system
is numerically solved by employing the method of triangulation. Note
that, all the system kernel elements are double integrals of the form

0+°odpk fozﬂdgok given by eq. (15), which refer to the Green’s func-
tion Fourier expansion and are numerically computed, by a 12-point
quadrature Gauss algorithm [33], as in [23, 25]. Once the unknown
coefficients are determined, the currents on the plates surfaces and the
electric field in the near and far field region are computed, using the
formula [33]

T, (cos 0) = cos(nh) Un(cos @) = sin[(n + 1)6]/sin (19)

4. NUMERICAL RESULTS

Numerical calculations are carried out applying the analysis presented
in the previous two sections. In order to calculate the conductivity
currents induced on the plates surfaces and given by egs (9) and (19),
the unknown expansion coefficients ¢, and dg,, are determined by
numerically solving the Equl 2(Ng +1)(M, + 1) order linear system
of equations (17) via the method of triangulation. In calculating the
kernel elements and the right hand side elements, all the involved dou-
ble integrals [, dk = f0+oodpkpk fO%dnpk appearing in eqs (A.1) and
(A.4) of the Mathematical Appendix are numerically computed em-
ploying a 12-point quadrature Gauss integration algorithm [33]. The
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only singularity point of the integrands is the pr = kg branch point
and the proper selection of the branch cut is determined by the sat-
isfaction of the radiation conditions at the pg-complex plane. Then,
the convergence of the integrals value is checked with respect to both
the pp and ¢ subdivisions and the truncation of the pg-integration
upper limit. The right hand side integrands (A.4) exhibit an expo-
nential behavior e~ Prs8n(=2p)(0—2)=0p) (p=1,2,...,Q) for pp —
and, therefore, converge very fast, depending on the § and ZS relative
values. Then, the approximation that is described in section 3 concern-
ing the 6, — 07 (¢ =1,2,...,Q) factor enables the convergence of
the pg-integrals (A.1) with respect to their upper limit in the regions
o = e, w/2+e, m+e and 37/2+e with 0 < e << 1, whose
surface becomes noticeable for large values of the pg-variable. In these
regions, the worst convergence is exhibited, as e ?*% . In all the re-
sults that are presented in this section, it is assumed that kod, = 0.02.
Due to this assumption, although the final results (i.e., current distri-
butions) are not affected more than 0.5%, the involved pg-integrals
can be truncated at pr = 500kg, while an upper limit p; = 900kg
is required for kopd, = 0.01. The necessity of a relatively small value
for the pg-integration upper limit is also imposed, when considering
that a further computational cost increase is caused, due to the fact
that, all the (A.1) and (A.4) integrands vary more rapidly with the py
increase. Therefore, when integrating with respect to the @g-variable,
more subdivisions must be considered for large pp values. It should
also be noted that, since it has been numerically proved that the con-
tribution to the pg-integrals final value is much more significant at the
beginning of the pg-integration path, more dense pg-subdivisions are
needed for 0 < pg < 20kq , while these become much more sparse with
the pj increase.

After having ensured the convergence of the kernel elements and
the right hand side elements of the linear system of equations (17), the
convergence of the proposed method with respect to the system order
25:1 2(Ng+1)(M,+1), namely with respect to the truncation of the
(9.1) and (9.2) expansion series (i.e., the M, and N, integers) is con-
trolled by computing the conductivity current distributions. Probably,
this convergence is expected to be accomplished more rapidly, when
electrically small plates and/or electrically large distances between the
plates and the emitting Hertzian dipole —or moreover a plane wave
incidence— are considered. The convergence rate of near field quanti-
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Figure 2. Two uncoupled electrically small identical plates illuminated
by a Hertzian diploe parallel to the z-axis above the centre of the 1st
plate: (a) geometry: 70 =0, koa; = koag = 1, koby = koby = 0.25,
ws =0, koro = koyo = 0, kod = 2.1 and different places of the 2nd
plate along the x = y = 2z line.

ties, such as the conductivity current distributions, is the most impor-
tant result concerning the accuracy of the proposed method, because
of the fact that both the radiation patterns being far field quantities
and the input impedances being derived by an integration converge
more rapidly. Therefore, for all the derived results that follow, exten-
sive checks of the convergence in terms of the M, and N, integers
are carried out and presented.

In order to have independent checks of the proposed method, nu-
merical results are carried out for special cases and compared with
previous works. To this end, a structure consisted of two conducting
plates (Q = 2) is considered (see Figure 2(a)). The global carte-
sian coordinates system coincides with the local cartesian coordinates
system attached to the 1st plate centre of gravity, i.e., r{ = 0 and
(z,y,2) = (z1,y1,21) .- The 2nd plate is placed very far from the 1st
one, so that there is no coupling between the two plates and the de-
rived results are compared with previously published data, concerning
one conducting plate [23, 34, 35]. An indicative case concerning elec-
trically small plates is shown in Figure 2, to be compared with Figure
3.5 of [34]. The plates are of equal dimensions kopa; = kpaz = 1 and
kobyr = kobs = 0.25, while a Hertzian dipole is radiating parallel to the
z-axis (s = 0) above the centre of the 1st plate (zo =yo =0) at a
vertical distance koo = 2.1 (i.e., very close to the 1st plate). Starting
from a distance kox) = koyd = kozJ = 100, the 2nd plate is moved
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Figure 2. Two uncoupled electrically small identical plates illuminated
by a Hertzian diploe parallel to the xz-axis above the centre of the
1st plate: (b) co-polarised currents |J.| on both plates for koz§ =
koy) = koz§ = 100 (c) co-polarised currents |.J,| on both plates for
koz$§ = koyd = ko239 = 10 (d) co-polarised currents |.J,| on both plates
for koxd = koyd = koz3 =5.
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towards the 1st one along the x = y = z line (keeping always the
primary source at the same position) and in Figure 2 the co-polarised
currents |J;| induced on both plates are plotted for different places
of the 2nd plate. Due to the electrically small dimensions of both
plates, even for koz9 = koyd = ko2l = 5, no coupling between the
two plates is exhibited and the conductivity currents are only affected
by the plates distance from the Hertzian dipole; therefore, only the
2nd plate currents alter in Figure 2. In all cases, detailed convergence
test are carried out, which are not presented here. The cross-polarised
currents |J,| converge more slowly than the co-polarised ones |J;|.
Nevertheless, as expected, the cross-polarised currents are one order of
magnitude smaller than the corresponding co-polarised ones on each
plate, while the currents excited on the 2nd plate start from being also
one order of magnitude smaller than the corresponding ones induced on
the much closer to the primary source 1st plate and gradually increase
as the 2nd plate approaches the 1st one (and the excitation). The va-
lidity of the code is further checked by considering a case symmetrical
to the one presented in Figure 2(d). This is done by moving the 2nd
plate at koxg = koyo =5 and kgd =5 — 2.1 = 2.9 and getting for the
2nd plate the current distributions which corresponded to the 1st plate
in Figure 2(d) and vise versa. Then, moving to structures like the one
shown in Figure 1(a), the 2nd plate is placed concentrically to the 1st
one at koz) = koy) = 0 and koz9 = 5. Nevertheless, the electrically
small dimensions of both plates prevent the structure from behaving
like an open resonator, namely “trapping” part of the radiating energy
in-between the two plates region. In order to achieve a resonating be-
havior, it is necessary to move to electrically larger dimensions, which
is done in the following. However, dealing with electrically larger struc-
tures would lead to practically prohibitive computational cost, both in
terms of memory requirement and CPU time, since more basis func-
tions (i.e., larger M, and M, values) would be needed to achieve the
same order of accuracy. This problem is encountered using parallel
processing techniques, extensively discussed in [20-22].

As already mentioned in the introductory section, the specific case
of two parallel concentric plates (i.e., @ =2 and (z1,y1) = (x2,¥2) ),
consisting a Fabry-Perot type open resonator, is of special importance.
In Figure 1(a), the specific examined geometry is shown. The open
resonator system is excited by a Hertzian dipole placed in the mid-
dle of the distance between the two plates (29 = yo =0, § = 7/2),
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whereas the plates dimensions are a, x by =27 x 21 (¢ =1,2). Due
to the examined structure symmetry, the conductivity currents dis-
tribution induced on the two plates surfaces is identical. In order to
compute the system kernel phase space double integrals, the 12-point
quadrature Gauss algorithm is parallelised, by subdividing the integra-
tion path and splitting the corresponding calculations on to different
processors of the parallel machine. The resulting parallel algorithm is
computed exhibiting considerable speedups, for plates with dimensions
of multiple wavelengths. Due to the inherent parallel nature of the pro-
posed MoM, the results are obtained with minimal additional to the
sequential code programming effort [20-23]. Then, the computation
times become tolerable, allowing for the problem size, hence the accu-
racy, to be increased. The numerical results presented in Figures 3-5
are performed on a shared-memory Silicon Graphics Power Challenge
with 14 TFP processors. The convergence of the conductivity current
distributions is in any case better than 5%, whereas the convergence
rate depends on the problem size, namely the product of the frequency
times the most critical dimension (plates sizes or dipole-plates dis-
tance). This convergence in terms of Ny = No =N =M; = My =M
is shown in Figures 3, 4 and 5 for three different operation frequencies
ko = 1, 2 and 3 respectively. As expected, the dominant co-polarised
J, currents converge faster than the cross-polarised J, ones, which
are in any case one order of magnitude smaller. Furthermore, it is
clear that, as already mentioned, more basis functions are needed for
higher frequencies. In Figure 6, the resonance behaviour of the exam-
ined structure is exhibited by plotting the J, currents, sweeping the
frequency from ko = 0.1 to ko = 2 (with more detailed presentation
around the resonance region kg = 1), while Figure 7 summarises the
open resonator results for the same frequency region.
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Figure 6. Co-polarised conductivity currents distribution induced on
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Figure 6. Co-polarised conductivity currents distribution induced on
each plate of the open resonatoor shown in Figure 1(a), for the fre-
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Figure 6. Co-polarised conductivity currents distribution induced on
each plate of the open resonatoor shown in Figure 1(a), for the fre-
quency region kg = 0.1 to 2.0 (|J;(0,0)| = max|J,|).

Finally, in order to prove the applicability of the developed code
to diverse structures of the type shown in Figure 1(b), indicative con-
vergence results are presented in Figure 8 concerning a plane wave
incidence E(r) = Zexp(—jkoz - r) on two plates lying on the same
zy-plane (29 = 2{ = 0). Additionally, the 2nd plate is tilled with re-
spect to the 1st one, as shown in Figure 8(a) and, therefore the angle ¢
has to be taken into account in all the involved calculations. As far as
that 1st plate 2A x 2\ is concerned, only the dominant co-polarised x-
currents are plotted in Figure 8(b), which serve also as an independent
check of the proposed method by comparing with previously published
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data [23, 35|, while as far as the 2nd plate A x X is concerned, both -
and y- currents are significant due to the ¢ angle and their conver-
gence is exhibited in Figures 8(c) and (d) respectively. Note that, the
latter current distributions on the 2nd plate are plotted with respect
to the local cartesian coordinates system (x3,¥s2) , attached to the 2nd
plate centre of gravity.
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Figure 7. Max |J,| distribution in the frequency region kg = 0.1 to
2.0 for the open resonator shown in Figure 1(a).
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az = by = X, ¢ = 45° (b) convergence of the |J;| currents induced
on the 1st plate.
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Figure 8. Plane wave incidence E((r) = & exp(—jkoZz-r) on two plates
lying on the same xy-plane, the 2nd one being tilled with respect to
the 1st one: (d) convergence of the |J,| currents induced on the 2nd
plate.

5. CONCLUSIONS-FUTURE WORK

The resonance properties of a parallel-plates open resonator have been
examined, using an integral equation formulation in conjunction with a
moment method with entire domain Chebychev type Galerkin expan-
sions. Several different geometries concerning the plates dimensions
and relative position and/or the dipole-plates relative positions have
been investigated.

Knowledge of the Hertzian dipole effect (Green’s function) is a fun-
damental stage in analysing other not-elementary source types, while
the pursued analysis can be easily extended to the case of multi Fabry-
Perot resonators, taking into account coupling phenomena between
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closely spaced resonators. Furthermore, once the multi-plate prob-
lem shown in Figure 1(b) is solved, more complex conducting struc-
tures could be constructed. To this end, other shapes such as rhombs,
trapezoids or polygonals will be additionally examined in the future,
together with the “corner” problem, in order to construct more com-
plicated —in terms of geometry— configurations.

MATHEMATICAL APPENDIX

The analytical expressions of the system (17) kernel elements are
defined as

Yy / /
X, (n,m,n’,m’)
who // - e Ilaosgn(zp—29) (2p — 20 +0p) +ka (2 —27)+hy (yg —yy)]

- 87‘(’2]43(2) qo
Qp

U, (=k)-Alk)- U, (k) (A1)
where (¢=1,2,...,Q; p=1,2,...,Q), [2 = xgiﬂ—i—ygg}—kzg% denotes
the position vector of the g-th plate centre of gravity with respect to
a global system of coordinates (z,y,z), 6, — 0T, k and qo = qO(E)

are defined by eqs (15) and (16) respectively,
kuaq keybg
— o (D) (=75 I (=751

U k) =
(m 4 1) Ty (= B2y (— B2ty
: (A.2)
2j ("+m)ky/(aq772)

and
A(k) = Alpr, o)
= (kg — k2)&% — koky(29 + 92) + (kg — k)i (A.3)
As far as the right hand side of eq. (17) is concerned, if the excitation

consists of an elementary horizontal Hertzian dipole defined by eqs
(1)—(3), it is valid that

XU)(n'm)

[ [ e Gt b D)
B _87r2kgﬂ// %
k

k) (A4)
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where R(k) = k26 — (k- 0)k, while, if a plane wave defined by eq. (4)
illuminates the multi-plate conducting structure, it is valid that

XU (n'm') = éexp [— jhoks - (1 +6,2)| T, (kok:) (A.5)
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