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1. INTRODUCTION

For many applications we need to study arrays of scattering and ab-
sorbing particles, for example for the design of absorbing coverings,
frequency selective surfaces, or photonic crystals. These arrays are
often located near conducting surfaces or near interfaces with dielec-
tric media. Also, multilayer arrays are of considerable interest. The
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key configuration to study here is the system of two parallel arrays of
particles. In this paper we address this problem for the case when the
arrays can be dense (in the scale of the wavelength), and the separation
between the array planes can be arbitrary.

Electromagnetic properties of planar arrays of scatterers can be an-
alytically investigated in several different ways. Most of the difficulties
here are related to the calculation of the field which excites every par-
ticle in the array, so-called local field. The local field acting on an
inclusion is the sum of two parts: the external field of the incident
wave and the field created by all the other particles of the system at
the point where the considered inclusion is located. The problem is to
find that second contribution into the local field, that is the field of
all the other inclusions. It appears that this part of exciting field (so-
called interaction field) can be evaluated in regular discrete systems
by direct summation of scatterers fields. However, this procedure fails
when the full-wave case is considered. In 2D and 3D systems the sums
representing the interaction field do not converge because they contain
wave-field terms which decrease as 1/r , where r is the distance from
an inclusion to the point where the field is evaluated. The assumption
of small losses existing in space saves the situation theoretically, but
does not give any practical receipt for the interaction field calculation,
because the series converge very slowly.

In this paper we develop an analytical method which allows simple
analytical solutions for double arrays of dipole scatterers. The main
assumption is that the distance between the elements in an array is
smaller than about one half of the wavelength, so that the resonant
situation when the interaction field tends to infinity (which happens
when the particle separation tends to the wave length) is excluded.
The distance between the two arrays can be arbitrary, and also the
two arrays can contain different scatterers, for example one array can
be made up of inclusions having electric dipole moments and the other
one can contain inclusions with magnetic dipole moments or indeed a
combination of both electric and magnetic dipole moments. The result
is expressed as a sum of dipole fields of a few nearly-located dipoles
plus the contribution of all the other dipoles located at distances larger
than a certain effective radius expressed in a closed form. With the
results of this paper, the reflection and transmission problems can be
solved easily provided the polarizabilities of the individual particles are
known. This is demonstrated for a double array of magnetic particles,
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and also for a similar array near a metal screen. In fact, since the field
of an array at an arbitrary distance is known, also multilayer structures
can be analysed in a similar way. The present theory is restricted to
the case of the normal plane-wave incidence. This paper develops the
idea originally suggested in [1].

For dense arrays, when the distances between the dipoles are smaller
than approximately quarter of the wavelength, the solution can be fur-
ther simplified. In the analytical formula which expresses the contribu-
tion of the dipoles located at distances larger than R , an effective ra-
dius R = R0 can be introduced, such that the analytical formula gives
the total interaction field (only single central dipole is then considered
separately). With this result it becomes easy to solve optimization
problems such as choosing the particle polarizability which provides
the maximum absorption, etc.

In the known literature, the main attention was on three-dimensional
bulk structures, and very extensive literature exists on the effective
parameters of composite materials. Single arrays were also investi-
gated numerically (especially in connection to the design of frequency
selective surfaces) and analytically in the quasistatic approximation
(e.g., [2]). Interactions in layered structures were considered for small
distances between layers, in modeling surface properties (e.g., [3, 4]).
Usually, these theories were based on the quasistatic approximation
or (and) numerical simulations. Also, layered structures with reso-
nant distances between layers were considered in studies ofphotonic
band-gap materials, mainly with numerical methods. The exact full-
wave solution is available for a single regular array of electric dipoles
oriented parallel to the array plane [5].

2. CALCULATION OF LOCAL FIELD

Consider a system of two parallel infinite periodic arrays of scattering
particles, see Figure 1. Elements belonging to one array are identical
and identically oriented, but they can be different from the other array
elements. The shape of the particles can be arbitrary, provided they
can be modeled in the dipole approximation. The cell size for both
arrays is a × b .

On one hand, the system is investigated in such frequency ranges
that the distance between the elements is smaller than approximately
λ/2 , where λ is the wavelength of the external field. On the other
hand, the characteristic dimension of the particles is smaller than the
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Figure 1. Geometry of the problem.

distance between them. In view of these conditions we assume that
the scatterers can be replaced by electric or magnetic dipoles, or a
combination of these. Distance between array planes is h , vector h
is parallel to the axis z . The system is under normal plane-wave
excitation. We use the standard notations for the free-space wave
impedance ( η =

√
µ0/ε0 ) and wavenumber ( k = ω

√
ε0µ0 = 2π/λ ).

The time dependence is of the form ejωt .
To find the local field acting on a arbitrarily chosen particle it is

necessary to sum up the fields created by all the other particles of
the system at the location point of a chosen one. It is obvious that
the corresponding sums do not converge in the case when the wave-
field terms are taken into account. By assuming that there are small
losses in space, the sum can be calculated, but the convergence is very
slow because of the oscillating behavior of the sum members. In [1], an
alternative method to find the local field avoiding the direct summation
of the dipole fields has been proposed. Here we extend that method to
double and multilayer arrays, calculating the field created by an array
at an arbitrary observation point, not necessary in the array plane.
This gives a possibility to study layered structures of dipolar arrays by
analytical means.

Under the normal plane-wave excitation all the dipoles of each array
are equal and in-phase. Let us write the expression for the full-wave
fields created by electric and magnetic dipoles. For the electric field of
an electric dipole and the magnetic field of a magnetic dipole we have,
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respectively (see, e.g., [6, p. 411]),
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1
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The electric field created by a magnetic dipole and the magnetic field
created by an electric dipole are the following:
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k2
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e−jkr
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(
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1
jkr

)
(3)
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4π
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e−jkr

r

(
1 +

1
jkr

)
(4)

Here p is the electric dipole moment, m is the magnetic dipole mo-
ment, n = r/r is the unit vector in the direction of r , r = |r| , and
vector r points from the observation point to the dipole.

Because the particles of one array can be different from that in
the other array, the local field exciting the elements of the system
should be found for the two planes separately. This local field at the
plane of each array can be written as the sum of the external field
Eext = E0e

−jk·r = E0e
jkz ( Hext = H0e

jkz ) and the interaction field
Eint , Hint :

Eloc
1 = Eext|z=0 + Eint

1 , Eloc
2 = Eext|z=−h + Eint

2

Hloc
1 = Hext|z=0 + Hint

1 , Hloc
2 = Hext|z=−h + Hint

2

(5)

Note that the geometry of the problem is such that the local field acting
on the particles in one plane is the same for all of them. This allows
to place the origin of the Cartesian coordinate system (x, y, z) at the
center of an arbitrary particle and restrict the analysis to the local field
for the particle at the origin and for the particle at (0, 0,−h) .



290 Yatsenko et al.

To calculate the interaction field we remove one dipole and sum
up the fields generated at its location by all the other dipoles of both
arrays. Electric interaction fields are given by

Eint
1 =

∑

l

′
Ep(rl) +

∑

n

{Ep(rn + h) + Em(rn + h)}

Eint
2 =

∑

n

′
Ep(rn) +

∑

l

{Ep(rl − h) + Em(rl − h)}
(6)

Magnetic interaction fields are given by similar relations if one replaces
E by H , index p by index m and conversely (here and in the fol-
lowing we do not explicitly present this case to save space). The first
terms in (6) are the contributions of all the scatterers in the same array
where the local field is determined, except of one particle (this excep-
tion is denoted by the prime sign). Note that we do not consider the
electric field created by magnetic dipoles here because for our case its
contribution into the local field vanishes due to the symmetry of the
problem. The second sum in (6) is the field created by the scatterers
of the other array.

According to the present method, which is in a way similar to the
Lorenz–Lorentz–Clausius–Mossotti theory, to find the interaction field
avoiding direct summation we choose a circle of radius R on the planes
of both arrays, and for each plane replace the discrete dipole moment
distribution outside the circle by a continuous distribution of dipole
moments. The continuous distributions (surface densities of dipole
moments) are connected to the discrete dipole moments as

ps =
p
S0

, ms =
m
S0

(7)

where ps and ms denote the electric and magnetic dipole surface den-
sities, respectively. S0 is the cell area ( S0 = ab for rectangular cells).
Next, from every sum in the expression for the interaction field (6) we
extract the contributions of distant dipoles ( ri > R ). These extracted
sums we replace by integrals which are the fields of the homogenized
dipole moment distributions:

∑

i

′
Ep(ri) ≈

∑

i
ri<R

′
Ep(ri) +

1
S0

∫

ri>R

Ep(ri) dS (8)
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∑

i

{Ep(ri ± h) + Em(ri ± h)} ≈
∑

i
ri<R

{Ep(ri ± h) + Em(ri ± h)}

+
1
S0

∫

ri>R

{Ep(ri ± h) + Em(ri ± h)} dS (9)

Now it is convenient to introduce the following notations:

Esheet(p,±h) =
1
S0

∫

ri>R

Ep(ri ± h) dS

Esheet(m,±h) =
1
S0

∫

ri>R

Em(ri ± h) dS

(10)

Ehole(p,±h) =
∑

i
ri<R

Ep(ri ± h), h �= 0

Ehole(m,±h) =
∑

i
ri<R

Em(ri ± h), h �= 0
(11)

Esheet is the field created by the continuous distribution sheet with
a hole of radius R , at the axis of the hole and at a distance h from
its center. Ehole is the field created by the discrete dipoles inside the
circle. In the case h = 0 we must replace

∑
by

∑′ . It means that
the dipole for which the local field is determined does not take part in
the generation of this field (which is applied to this very dipole).

Then, the local field can be represented in terms of E0 , Esheet and
Ehole :

Eloc
1 = E0 + Esheet(p1, 0) + Esheet(p2,h) + Esheet(m2,h)

+ Ehole(p1, 0) + Ehole(p2,h) + Ehole(m2,h)

Eloc
2 = E0e

−jkh + Esheet(p2, 0) + Esheet(p1,−h) + Esheet(m1,−h)

+ Ehole(p2, 0) + Ehole(p1,−h) + Ehole(m1,−h)
(12)

Magnetic local field can be expressed analogously. Next we calculate
Esheet and Hsheet . To evaluate the integrals we split the excited in
particles electric and magnetic dipole moments into components which
are parallel and orthogonal to the array planes and consider them sepa-
rately. After some algebra, the integrals reduce to simple combinations
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of elementary functions. For co-directed dipoles parallel to the array
plane we find:

Esheet(p,h) = −jωps
η

4

{
1 − 1

jk
√

R2 + h2

+
h2

R2 + h2

(
1 +

1
jk

√
R2 + h2

)}
e−jk

√
R2+h2

(13)

Hsheet(m,h) = −jωms

4η

{
1 − 1
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√

R2 + h2

+
h2

R2 + h2

(
1 +

1
jk

√
R2 + h2

)}
e−jk

√
R2+h2

(14)

Esheet(m,h) =
jω

2
h × ms√
R2 + h2

e−jk
√

R2+h2
(15)

Hsheet(p,h) = −jω

2
h × ps√
R2 + h2

e−jk
√

R2+h2
(16)

For dipoles orthogonal to the plane we have:

Esheet(p,h) = −jωpsη

2

{
1 +

1
jk

√
R2 + h2

}
R2

R2 + h2
e−jk

√
R2+h2

(17)

Hsheet(m,h) = −jωms

2η

{
1 +

1
jk

√
R2 + h2

}
R2

R2 + h2
e−jk

√
R2+h2

(18)

Esheet(m,h) = Hsheet(p,h) = 0 (19)

As a check, we can observe that for h = 0 these results reduce to that
obtained earlier in [1]. Also, all the limiting cases give the expected
correct results. In particular, for h → ∞ we have simple plane-wave
fields created by the averaged polarizations. Also for R = 0 we have
a uniform polarized sheet (electric or magnetic current sheet), and the
results correctly give the plane-wave field excited by a current plane. In
Appendix we show the details of the calculations of the field created by
the continuous electric dipole distribution sheet with a hole of radius R
for co-directed dipoles parallel to the array plane ( Esheet(p,h) , (13)).
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3. APPROXIMATE ANALYTICAL FORMULA

For dense arrays only a few nearly located inclusions must be consid-
ered as separate scatterers in the calculations of the interaction field,
and the main contribution can be evaluated as that from the averaged
dipole moment density, see [1]. We have a freedom to choose the ra-
dius R inside which we consider the inclusions individually. If we now
replace all the particles of a square-cell array but the reference one
by a “sheet with a hole” (which means we choose the hole radius R
to be smaller than the distance between the particles a ), we can find
such a radius of the hole that the results given for h = 0 by formulas
(13), (17) (or (14), (18)) coincide at zero frequency with the known
static results. This takes place for R = R0 = a/(4Cpar) for dipoles
parallel to the plane and R0 = a/(2Cort) for dipoles orthogonal to the
plane, where Cpar and Cort are the known interaction constants at
zero frequency, see the next section. It is interesting to note that this
value is the same for dipoles both parallel and orthogonal to the plane
(in fact, R0 ≈ a/1.438 ). Next, the contributions into the interaction
field from both arrays at low frequencies can be approximately found
from (13)–(19) substituting this special value of R . Curves calculated
by this approximate method are compared with the exact solution in
the next Section (surprizingly good agreement with the exact solution
is observed). In principle, one could establish an even more accurate
model defining the effective hole radius as a function of the distance
h to the array plane. However, the calculated results show that there
would be only a small improvement but far more complications.

This approximate method gives reasonable results for grids with
square cells only. The reason is that in other cases the round shape of
the hole does not correspond to the cell shape.

4. NUMERICAL EXAMPLES

In the numerical examples we consider arrays with square cells ( a = b ).
The contributions into electric and magnetic interaction fields from
one array of electric dipoles are evaluated for different values of the
parameters ka and h/a . Two cases are considered, that of the parallel
and perpendicular orientations of the dipole moments with respect to
the array plane.
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Figure 2. Behavior of the sum of dipole electric fields for ka = 0.5
and h = a. Parallel orientation of electric dipoles.

Figure 3. Behavior of the sum of dipole magnetic fields for ka = 0.5
and h = a. Parallel orientation of electric dipoles.
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Let us study the behavior of the dipole field sums Ehole , Hhole . The
calculated results for the parallel orientation of dipoles are presented
on Figures 2 and 3. On Figure 2 the normalized electric field is given
in the form of the interaction constant C = Eε0a

3/p (as defined by
Collin in [5]). The solid and dashed lines represent, respectively, the
real and imaginary parts of the normalized field created by all the
discrete dipoles located in the “hole” of one plane. The frequency is
chosen so that ka = 0.5 . The distance from the array plane to the
observation point h = a . One can see that when the hole radius R
increases, this part of the interaction field does not converge to any
value, but it is an oscillating function of R . However, when the field
of the external to the “hole” area Esheet is added, the behavior of the
total one-plane interaction field Ehole + Esheet is completely different:
good convergence is observed. The corresponding results are presented
on Figure 2 as × and ◦ points marking the real and imaginary parts
of C , respectively. Figure 3 shows the same results for the magnetic
field of the parallel-oriented electric dipoles. The normalizing factor
for the magnetic field is defined as ηε0a

3/p .
Figures 4–9 (solid lines) show the normalized electric and magnetic

fields created by one array of the electric dipoles (both parallel- and
orthogonal-oriented) as functions of the parameters ka and h/a . The
results given by an approximate analytical formula introduced in the
previous Section are shown by crosses × . Here the contribution of
the central dipole has been subtracted from the calculated values of
the fields. Because at large distances from the array plane the inter-
action field behaves as a plane wave exp(−jkh) , the normalization
factors for the electric and magnetic fields of the array are chosen as
ε0a

3 exp(jkh)/p and ηε0a
3 exp(jkh)/p , respectively. In this form

the results show the “amplitude” of the wave, which of course depends
on the distance from the plane. The fields have been calculated in
the following manner. At first, the hole radius R was chosen so large
that the oscillations of the total interaction field Ehole + Esheet (or
Hhole + Hsheet ) become negligible, see Figures 2, 3. Then for that R
the fields have been calculated and normalized.
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On Figure 4 the values of the normalized electric field of parallel-
oriented electric dipoles are depicted. One can see that for ka = 0.1
and h = 0 the magnitude of the normalized field approaches its exact
static value (approximately 0.36 ). When the distance from the array
plane h increases, the magnitude of the real part of the field becomes
smaller and smaller. This is the reactive field which corresponds to
the local, non-propagating part of the array field. The imaginary part
corresponds to the magnitude of the plane wave excited by the averaged
plane current. For ka = 1.0 this part of the field is larger because the
current Js = jωps which radiates that plane wave is proportional to
the frequency. From these results we can estimate how close to the
array plane the far-zone plane wave if formed: the field is nearly a
plane wave at distances of about several grid periods. On Figure 5
the same results for the normalized magnetic field of the same arrays
of electric dipoles are shown. Just at the array plane (at h = 0 )
the magnetic field is zero, at large distances it becomes the plane-
wave field (the imaginary parts tend to the same limits as that of the
normalized electric field, compare with Figure 4). The reactive field
has an extremum at about one half of the grid period.

Figure 6 represents the normalized electric field of the orthogonal-
oriented dipoles. Because no plane wave is excited in such systems, the
interaction field tends to zero when h → ∞ . For the case of h = 0
the exact static solution can be found in a similar way as in [5] for
the dipoles parallel to the plane (see also [2]). For the perpendicular
orientation, the result is of the opposite sign and twice as large as in
the previous case (approximately −0.72 ). We observe that for small
ka the limiting value agrees with the known static result. Figures 7–9
show the dependency of the normalized fields on ka . These results
allow to conclude that the approximate analytical formula which uses
the static solution to determine the equavalent hole radius R0 gives
in fact very good results up to ka ≈ 1.5 , where dynamic effects are
already quite essential. From the shapes of the curves one can see that
the real and imaginary parts of the interaction constants are subject
to the Kramers–Kronig relations, as should be.
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Figure 4. Real and imaginary parts of the normalized electric field
Eε0a

3 exp(jkh)/p as functions of h/a . Electric dipoles are parallel to
the array plane. Exact (solid lines) and approximate (×) results.

Figure 5. Real and imaginary parts of the normalized magnetic field
Hηε0a

3 exp(jkh)/p as functions of h/a . Electric dipoles are parallel
to the array plane. Exact (solid lines) and approximate (×) results.
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Figure 6. Real and imaginary parts of the normalized electric field
Eε0a

3 exp(jkh)/p as functions of h/a . Electric dipoles are orthogonal
to the array plane. Exact (solid lines) and approximate (×) results.

Figure 7. Real and imaginary parts of the normalized electric field
Eε0a

3 exp(jkh)/p as functions of ka . Electric dipoles are parallel to
the array plane. Exact (solid lines) and approximate (×) results.
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Figure 8. Real and imaginary parts of the normalized magnetic field
Hηε0a

3 exp(jkh)/p as functions of ka . Electric dipoles are parallel to
the array plane. Exact (solid lines) and approximate (×) results.

Figure 9. Real and imaginary parts of the normalized electric field
Eε0a

3 exp(jkh)/p as functions of ka . Electric dipoles are orthogonal
to the array plane. Exact (solid lines) and approximate (×) results.
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Figure 10. Real and imaginary parts of the normalized electric field
Eε0a

3 exp(jkh)/p as functions of h/a for ka = 0.1 . Dipoles are
parallel to the array plane. The field of the sheet with a hole (×) , the
field of the central dipole (◦) and their sum (solid lines).

In the previous examples, the contribution of the central dipole has
been removed, mainly because in calculations of the local field in a
single array that reference particle is absent. In that way we could
see how that local field behaves at small distances from the plane.
However, when one calculates the contribution of the inclusions in one
plane to the local field for an inclusion in the other plane, the first
plane must be a complete plane with all the particles present. The
next two Figures (10, 11) give a comparison of the contributions from
the central dipole and that from all the other dipoles to the field of
an array measured at distance h from the array plane. Figure 10
is for dense arrays ( ka = 0.1 ). We observe that the central dipole
contribution into the reactive field (the real part of the normalized
field) dominates at small distances from the plane. The rest of the
plane gives a contribution of the opposite sign, and at distances larger
than about h = a the two parts cancel, and only the plane-wave field
(the imaginary part of the field) remains. Clearly, the contribution to
the plane wave from one individual dipole is negligible.
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Figure 11. Same as in Figure 10 for ka = 1 .

Figure 11 corresponds to sparse arrays ( ka = 1 ). Also in this case
we see that the reactive field of the plane quickly vanishes (see solid
line, the real part of the field) as the contributions from the central
dipole and that from all the other dipoles cancel each other. In this case
the discrete character of the array is seen at much larger (in terms of
the ratio h/a ) distances from the plane. However, it is very important
that also in this case the total field of the plane (solid lines) reduces to
a plane wave already quite close to the plane: that happens at h > 2a ,
just like for dense arrays.

5. ARRAYS OF MAGNETIC DIPOLE SCATTERERS

5.1 Two Arrays of Magnetic Dipoles with Scalar
Polarizabilities

In this section we consider a system of two parallel square-cells
arrays of magnetically polarizable dipole particles. Geometry of the
problem is depicted on Figure 1. The system is illuminated by a plane
wave Hext = H0e

jkz . The particles of the two arrays have scalar mag-
netic polarizabilities which are equal to χ1 and χ2 , where the index
refers to the first and the second array, respectively. Induced magnetic



302 Yatsenko et al.

dipole moments of the particles are determined by the values of the
local fields:

m1 = χ1Hloc
1 , m2 = χ2Hloc

2 (20)

The expressions for the local fields are given analogously to

Hloc
1 = H0 + Hsheet(m1, 0) + Hhole(m1, 0)

+ Hsheet(m2,h) + Hhole(m2,h)

Hloc
2 = H0e

−jkh + Hsheet(m2, 0) + Hhole(m2, 0)

+ Hsheet(m1,h) + Hhole(m1,h)

(21)

Using formula (14) with R = R0 = a/1.438 (see Section 3) we can
rewrite relations (21) in the following form:

Hloc
1 = H0 + αm1 + βm2

Hloc
2 = H0e

−jkh + αm2 + βm1

(22)

where the interaction coefficients α and β read:

α = − jω

4ηS0

{
1 − 1

jkR0

}
e−jkR0 (23)

β = − jω

4ηS0

{

1 − 1
jk

√
R2

0 + h2

+
h2

R2
0 + h2

(

1 +
1

jk
√

R2
0 + h2

)}

e−jk
√

R2
0+h2

− 1
4πµ0

{
1
h3

+
jk

h2
− k2

h

}
e−jkh (24)

Parameter α determines the interaction between the particles of one
array, and parameter β — interaction between the two arrays. The
second term in (24) takes into account the contribution of the central
dipole from the other array. Using (20), (22)–(24) we find

m1 =
H0

∆

{
1
χ2

− α + βe−jkh

}
, m2 =

H0

∆

{(
1
χ1

− α

)
e−jkh + β

}

(25)
where ∆ = (χ−1

1 −α)(χ−1
2 −α)−β2 . To calculate the far-zone reflected

or transmitted field the parallel-oriented magnetic dipoles belonging
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to one plane can be replaced by a magnetic current sheet carrying the
surface current Jm = jωm/S0 . Magnetic field created by that current
sheet is H = −Jme−jk|z|/2η , for the case when the sheet is located
at z = 0 . Now we can write the reflected field as a sum of two parts
created by the first and the second arrays:

Href = Href
1 + Href

2 = − jω

2ηS0

(
m1 + m2e

−jkh
}

(26)

Hence, the reflection coefficient is

R =
Href

Hext

∣
∣
∣
∣
z=0

= − jω

2ηS0∆

{
e−j2kh

χ1
+

1
χ2

− α(1 + e−j2kh) + 2βe−jkh

}

(27)

5.2 Reflection From an Array Near a Metal Screen

The above solution can be used to find the reflection coefficient from
an array of magnetic particles near a metal screen. This problem is
relevant to the design of radar absorbers based on artifical magnetics.
Let us consider the case of one array of magnetic dipole particles with
scalar polarizabilities χ . The array plane is located at distance h/2
from a metal screen. The incident field is the same as assumed in the
previous section. In this case we can use Figure 1 assuming that plane
one is the plane of the dipole scatterers and plane two is the mirror
image of that scatterers in the ideally conducting plane. The value of
the magnetic dipole moment of the particles is

m = χHloc (28)

where the local field can be written in terms of H0 and Hint :

Hloc = H0(1 + e−jkh) + Hint (29)

Here the factor 1 + e−jkh is needed to account for the reflection of
the incident wave in the screen. Hint is the interaction field, which is
proportional to the magnetic moment of the particles:

Hint = αm (30)
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The interaction coefficient α has been studied above, and it reads

α = − jω

4ηS0

{
1 − 1

jkR0

}
e−jkR0 − 1

4πµ0

{
1
h3

+
jk

h2
− k2

h

}
e−jkh

− jω

4ηS0

{

1 − 1
jk

√
R2

0 + h2

+
h2

R2
0 + h2

(

1 +
1

jk
√

R2
0 + h2

)}

e−jk
√

R2
0+h2

(31)
where R0 = a/1.438 . After simple algebra we find the induced dipole
moment

m =
χ

(
1 + e−jkh

)

1 − αχ
H0 (32)

Using (28)–(31) we find the reflected magnetic field

Href = H0e
−jkh − jωm

2ηS0

(
1 + e−jkh

)
(33)

and the reflection coefficient

R =
Href

Hext

∣∣∣∣
z=0

= e−jkh − jωχ
(
1 + e−jkh

)2

2ηS0(1 − αχ)
(34)

The analytical result for the reflection coefficient allows to define re-
quirements for the optimum values of particle polarizabilities needed
to achieve specific goals. Obviously, the reflective properties strongly
depend on the interaction constant which defines parameter α in (34).

6. CONCLUSION

In this paper, the field created by a planar regular array of densely
packed particles has been analytically evaluated. The array elements
are assumed to be arbitrary-directed dipoles. No quasi-static approxi-
mation has been made, all field components taken into account. Direct
summation of the dipole fields cannot be used here since the series do
not converge. A physical model based on the assumption that the
far-located dipoles can be replaced by a homogenized sheet of surface
dipole densities has been used to solve the problem. This approach
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Figure 12. To the calculation of Esheet(p,h) .

leads to simple explicit formulas for the array field which have a clear
physical interpretation. For dense arrays with square cells, an approx-
imate formula has been suggested which expresses the array field in
terms of very simple elementary functions and allows analytical in-
vestigations of complicated reflection and transmission problems for
layered grid structures.

The results are illustrated by numerical examples which demon-
strate how the array field depends on the problem parameters and the
frequency. The distance from the grid plane at which the field becomes
a plane wave (as if the grid would bear the averaged homogeneous cur-
rent) can be easily estimated from these data. The theory has been
applied to the reflection problem for two arrays of magnetic dipoles and
for an array of magnetically polarizable particles near a metal screen.
Explicit analytical results for the reflection coefficient are given.

APPENDIX: CALCULATION OF Esheet(p,h) FOR CO-DI-
RECTED DIPOLES PARALLEL TO THE ARRAY PLANE

For the geometry of the problem we refer to Figure 12. The part
of the interaction field due to the distributed dipole moments can be
expressed for this case as

Esheet(p,h) =
1
S0

∫

r′>R

Ep(r′ + h) dS =
1
S0

∞∫

√
R2+h2

2π∫

0

Ep(r)r dϕ dr

(35)
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After substitution of (1) we can write:

Esheet(p,h) =
1

4πε0S0

∞∫

√
R2+h2

2π∫

0

{
k2(n × p) × n

+ [3n(n · p) − p]
(

1
r2

+
jk

r

)}
e−jkr dϕ dr

(36)

Vector n = r/r is the unit vector with the components:





nx = sin θ cos ϕ

ny = sin θ sinϕ

nz = ± cos θ = ±h/r

(37)

In relations (37) the upper sign coresponds to the location of the ob-
servation point in region z < 0 , and the lower sign for that in region
z > 0 . Let us consider the case when p = px0 , where x0 is the unit
vector in the direction of the x -axis, then

(n × p) × n = p(n2
y + n2

z)x0 − pnxnyy0 − pnxnzz0

3n(n · p) − p = p(3n2
x − 1)x0 + 3pnxnyy0 + 3pnxnzz0

(38)

Note that y - and z -components in Esheet(p,h) vanish after integra-
tion, thus the electric field is also x -directed. In addition to this, one
can see that because the term nz appears in (38) only as n2

z , the
values of the field are the same at both sides of the sheet:

Esheet(p, h) =
p

4πε0S0

∞∫

√
R2+h2

2π∫

0

{
k2(sin2 θ sin2 ϕ + cos2 θ)

+ (3 sin2 θ cos2 ϕ − 1)
(

1
r2

+
jk

r

)}
e−jkr dϕ dr

(39)

Integrating (39) over ϕ , we have after some transformations:

Esheet(p, h) =
p

4ε0S0

∞∫

√
R2+h2

{
k2 +

jkr + 1
r2

−jkh2 jkr + 2
r3

− h2 jkr + 3
r4

}
e−jkrdr

(40)
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Using the identity

∂

∂r

(
e−jkr

rγ

)
= −jkr + γ

rγ+1
e−jkr (41)

we can integrate by parts to find

Esheet(p, h) = − jkp

4ε0S0

{
1 − 1

jk
√

R2 + h2
+

h2

R2 + h2

+
h2

jk(R2 + h2)3/2

}
e−jk

√
R2+h2

(42)

This result can be easily generalized for arbitrary p = pxx0 + pyy0 ,
and the final result is (13).
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