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1. INTRODUCTION

In bistatic radar applications it is often desirable to collect database
about bistatic radar cross section (RCS), bistatic range profiles or
bistatic microwave images of targets for target identification. These
database can be established from field measurements. However, field
measurements are expensive and it is difficult to control measurement
parameters. Indoor measurements are usually preferable because pa-
rameters are more controllable and the results are repeatable. However
the distance required to satisfy the far-field condition is much longer
than the indoor dimension for many targets of interest.

Several near-field measurement techniques have been proposed to
predict far-field antenna patterns [1–3]. In these techniques, the radi-
ated field is measured by a small probe scanning over a large aperture.
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If we replace the testing antenna by an object and illuminate the ob-
ject by plane waves, then currents will be induced on the surface. The
induced surface current plays the same role as the current source of the
testing antenna. Therefore, we can use the same near-field measure-
ment technique to measure the scattered near fields and from which to
derive the far-field quantities. It is well known that the measured near-
fields can be considered as the secondary sources [4] and the Fourier
transform of the source distribution gives the far-field radiation pat-
tern. For the near-field scattering problem it is also expected that
the Fourier transform of the measured near-field will give the far-field
scattering pattern. However, this is a bistatic scattering pattern for
a given incident direction. To convert the bistatic scattering pattern
into bistatic RCS a calibration procedure is required.

Far-field bistatic range profiles can be obtained by transmitting a
narrow short pulse or a linear chirp signal or a burst of step-frequency
signals if the transmitter and the receiver can be coherently connected.
The derivation of far-field bistatic range profiles from near-field mea-
surements is nontrivial. In this paper we will propose an algorithm to
achieve that.

The generalized interpretation and prediction in far-field microwave
imaging involving frequency and angular diversity have been discussed
[5, 6]. An Ewald sphere representation for the Fourier space data
in the monostatic and bistatic frequency diversity imaging has been
established, and microwave images can be obtained by taking the in-
verse Fourier transform of the Fourier space data. In far-field mi-
crowave imaging, the Fourier space data are the measured far-field
monostatic or bistatic range-corrected scattered field with range cor-
rected with respect to a rotational center. In [7–9], several techniques
have been proposed to extract the far-field quantities from near-field
imaging. In this paper we will establish the relationship between the
near-field measurements and the far-field quantities. We will show how
to convert the near-field measurement data into the Ewald sphere rep-
resentation. Furthermore, we will propose algorithms to reconstruct
three-dimensional (3-D) images from near-field measurements. In the
near-field measurement, it is more practical to obliquely illuminate the
object. In that case, the Fourier space data should be properly con-
verted. We will suggest how to convert the Fourier space data for
oblique illumination.
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In Section 2 we will discuss bistatic far-field RCS, range profiles and
images. Relationship between near-field measurements and far-field
quantities will be described in Section 3. The derivation of far-field
bistatic RCS, bistatic range profiles and bistatic images from near-
field measurements will be given in Section 3 too. Numerical and
experimental results, especially for two-dimensional (2-D) case, will be
discussed in Section 4. Conclusions are given in Section 5.

2. FORMULATION OF THE INTEGRAL EQUATIONS

Figure 1 shows a metallic object illuminated by a plane wave with
wavenumber k . O is the reference point; l̂i is the unit vector directed
from the transmitting antenna to the reference point; l̂r is the unit
vector directed from the reference point to the receiving antenna; Ri

and Rr are the distances from the reference point to the transmitter
and receiver, respectively; β is the bistatic angle; l̂p is the unit vector
bisecting the transmitter and receiver; n̂(r̄′) is the unit vector normal
to the surface at the point r̄′ . Under the far-field and physical optics
(PO) approximation, the scattered field can be expressed as [5]

Ēs(̂lr, l̂i, k) =
jkHo

2πεoRiRr
e−jk(Ri+Rr)

∫
Sill

{(n̂ × êi) − [(n̂ × êi) · l̂r] l̂r} ejk(̂lr−l̂i)·r̄′ ds′ (1)

where Ho and êi are the magnitude and unit vector of the incident
magnetic field respectively and Sill denotes the illuminated surface
region of the object.

Let êr represent the polarization of the receiving antenna. The
quantity measured by the receiving antenna is given by

Φ(̂lr, l̂i, k) = Ēs · ê∗r (2)

where * represents the complex conjugate. Define the vector and scalar
object scattering functions Ō(r̄′) and O(r̄′) as

Ō(r̄′) = (n̂ × êi) − [̂lr · (n̂ × êi)]̂lr
O(r̄′) = Ō(r̄′) · ê∗r .

(3)

Define the p-space vector p̄ as

p̄ = k(̂li − l̂r) = 2k cos
β

2
l̂p. (4)
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Figure 1. Scattering geometry of a metallic object.

The range-corrected scattered field can be expressed as

Γ(̂lr, l̂i, k) =
2πεoRiRr

jkHo
ejk(Rr+Ri)Φ(̂lr, l̂i, k). (5)

Substituting Eqs. (1–4) into Eq. (5), we have

Γ(̂lr, l̂i, k) = Γ(p̄) =
∫

Sill

O(r̄′) ejp̄·r̄′ dS′ (6)

where the quantity Γ(p̄) is referred to as the p-space data or the
Fourier space data. Note that Γ(p̄) is a function of the incident di-
rection, the receiving direction and frequency, but it is independent of
the distances Ri and Rr .

There are three variables, k, l̂r, l̂i , which we can utilize to access
the Fourier space data. Frequency diversity refers to the change of
k ; while angular diversity refers to the change of l̂r or l̂r − l̂i . The
Ewald sphere construction process has been introduced to describe the
accessed data graphically [5]. For a given incident vector, k̄i = kl̂i , the
corresponding Ewald sphere is a sphere centered at k̄i and with radius
k as shown in Fig. 2, where the quantities k̄r = kl̂r and p̄ = k(̂lr− l̂i) .

Let (θi, φi) be the incident direction and (θ, φ) be the observation
direction. Then kl̂i, kl̂r and p̄ can be expressed as
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Figure 2. Ewald sphere construction process.

kl̂i = k(sin θi cos φix̂ + sin θi sinφiŷ + cos θiẑ) = kixx̂ + kiyŷ + kiz ẑ (7)

kl̂r = k(sin θ cos φx̂ + sin θ sinφŷ + cos θẑ) = kxx̂ + kyŷ + kz ẑ (8)
p̄ = (kx − kix)x̂ + (ky − kiy)ŷ + (kz − kiz ẑ) = pxx̂ + pyŷ + pz ẑ. (9)

The equation that describes the Ewald sphere for a given k̄i is given
by

k2 = k2
x + k2

y + k2
z

= (px + kix)2 + (py + kiy)2 + (pz + kiz)2. (10)

Given any value of (̂lr, l̂i, k) , we have a Fourier space data point. A
collection of Fourier space data points can be obtained by varying k ,
l̂r , l̂i or l̂r − l̂i . For the bistatic frequency and angular diversity case,
p̄ = k(̂lr − l̂i) , changing the direction of the receiving antenna will
change the direction of p̄ and changing the frequency will change the
radius of the sphere. The Fourier space data for different frequency
and bistatic angle are distributed on spheres (or circles when θ = 90◦)
as shown in Fig. 2. For a given bistatic angle β , the sampled Fourier
space data are distributed on the radial line along the direction of l̂p .
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Bistatic radar cross section information is important in missile ap-
plications; range profiles are important feature vectors for target iden-
tification; and microwave images have applications in diagnosing hot
spots of a target. These three quantities can be obtained from the
Fourier space data. The relation between the Fourier space data and
the bistatic RCS can be derived from the definition of the bistatic RCS.
By definition, the bistatic RCS for a given polarization pair (êi, êr) is
given by

σb = (4πRiRr)2
|Ēs · êr|2
|Ēo|2

. (11)

Using Eq. (2), Eq. (5) and the fact that |Ēi| = η|H̄i| we can rewrite
Eq. (7) as

σb = (4πRiRr)2
|Φ(̂lr, l̂i, k)|2

|ηH̄i|2
=

k2|Γ(p̄)|2
π

. (12)

where Ei, Hi and η are incident electric field, incident magnetic field
and free space intrinsic impedance, respectively.

In a high resolution radar, the target’s bistatic range profile can be
obtained by transmitting a very short pulse or by taking the inverse
Fourier transform of the sampled Fourier space data distributing along
a radial line. The three-dimensional microwave bistatic image can be
obtained by taking the inverse Fourier transform of the 3-D Fourier
space data directly. Note that the Fourier space data are the range-
corrected scattered fields rather than the measured fields. Therefore,
an accurate calibration procedure is required in order to obtain range
profiles and microwave images.

3. NUMERICAL SOLUTION OF INTEGRAL EQUATION

The relation between near-field measurements and far-field pattern can
be established by using the plane wave expansions [1–3]. Consider
Fig. 3, where a plane wave impinges on a metallic object and its scat-
tered fields are measured in the near-field region along x = −d . The
near-field scattered field Ē(r̄) can be expressed as [9]

Ē(r̄) =
1

4π2

{∫∫ −ωµo

2γ
e−jγd

[∫
Sill

[J̄s(r̄′) − k̂(k̂ · J̄s(r̄′))]ejk̄·r̄′ds′
]

e−j(kyy+kzz)dkydkz

}
(13)
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Figure 3. The near-field receiving configuration.

where γ, ky, kz are the angular spectrum components of the plane
wave, and γ and k̄ are respectively given by

γ =




√
k2 − k2

y − k2
z k2 ≥ (k2

y + k2
z)

−j
√

k2
y + k2

z − k2 k2 < (k2
y + k2

z)
(14)

k̄ = kxx̂ + kyŷ + kz ẑ = ±γx̂ + kyŷ + kz ẑ. (15)

The quantity J̄s(r̄′) in Eq. (13) is the induced surface current density.
Under the PO approximation J̄s(r̄′) is given by

J̄s(r̄′) =
{

2n̂(r̄′) × H̄i(r̄′) illuminated region
0 elsewhere

(16)

where H̄i is the incident magnetic field and is given by

H̄i(r̄′) = Hoe
−jkl̂i·r̄′ êi. (17)

The quantity k̄ in Eq. (15) is the propagation vector of the observation
direction. Letting k̄ = kl̂r and using Eqs. (16) and (17), we have

[J̄s(r̄′) − l̂r (̂lr · J̄s(r̄′))]ejk̄·r̄′

= 2Ho{n̂(r̄′) × êi − [(n̂(r̂′) × êi) · l̂r ]̂lr}ejk(̂lr−l̂i)·r̄′ . (18)

Comparing Eq. (18) and Eq. (1), we observe that both equations con-
tain the term {n̂(r̄′) × êi − [(n̂(r̂′) × êi) · l̂r ]̂lr} .
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Using Eq. (3) and Eq. (6), the near-field scattered field in Eq. (13)
can be expressed as

Ēs(x = −d, y, z) =
1

4π2

∫∫ −ωµoHo

γ
e−jγd Γ̄(p̄)e−j(kyy+kzz)dkydkz.

(19)

From Eq. (19), one can find that Ēs(x = −d, y, z) and −ωµoHo
γ

e−jγd Γ̄(p̄) are a 2-D Fourier transform pair. Therefore, we can obtain
Γ̄(p̄) by

Γ̄(p̄) =
−γ

kEo
ejγd

∫∫
Ēs(x = −d, y, z)ej(kyy+kzz)dydz (20)

Eq. (20) implies that the far-field Fourier space data can be derived by
taking the 2-D Fourier transform of the near-field measurement data.

As mentioned in the previous section, the Fourier space data Γ̄(p̄)
represents the far-field range-corrected bistatic scattered field. There-
fore, the bistatic field at any observation direction can be obtained by
using of Eq. (8) and substituting a suitable (ky, kz) into Eq. (20). The
bistatic RCS can then be derived from Eq. (12).

The Fourier space data Γ̄(p̄) can also be obtained by applying the
fast Fourier transform (FFT) to Eq. (19). With this method, the
sampled data points will be at py = m∆ky − kiy, pz = n∆kz − kiz

and px =
√

k2 − (m∆ky)2 − (n∆kz)2−kix , where (m, n) are integers.
With the normal incidence (i.e., θi = 90◦, φi = 0◦) , or kiy = kiz = 0 ,
the sampled Fourier space data points for various frequencies on the
θ = 90◦ plane are shown in Fig. 4(a). For the oblique incidence (i.e.,
θi = 90◦, φ �= 0◦ or kiz = 0, kiy �= 0) , the sampled data points are
shown in Fig. 4(b). It is important to have the correct locations of the
sampled Fourier space data. Otherwise, the reconstructed quantities
such as microwave images will not be correct.

To obtain the far field quantities, it is more convenient to express
Γ̄(p̄) in a spherical coordinate. Given a observation direction (θ, φ),
Γ̄(p̄) can be expressed as

Γ̄(p̄) = Γθθ̂ + Γφφ̂ (21)

where Γθ and Γφ are given by

Γθ = Γ̄ · θ̂ = Γx cos θ cos φ + Γy cos θ sinφ − Γz sinφ (22)

Γφ = Γ̄ · φ̂ = −Γx sinφ + Γy cos φ. (23)
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Using Eq. (20), the quantities Γx, Γy and Γz can be obtained by
collecting x-, y- and z-polarized near field of Ēs(x = −d, y, z) , re-
spectively. With the expression of Γθ and Γφ , we can obtain bistatic
quantities for various polarization combination. For example, with a z-
polarized incident wave, we measure Ey1(x = −d, y, z) and Ez1(x =
−d, y, z) . With a y-polarized wave, we measure Ey2(x = −d, y, z)
and Ez2(x = −d, y, z) . For an arbitrarily polarized incident wave

êi = aŷ + bẑ√
|a|2 + |b|2

, the bistatic far field will be the linear combination

of Γ̄1(p̄) and Γ̄2(p̄) . We can obtain polarization diversity by varying
the incident wave êi and the unit polarization vector of the receiving
antenna êr , accordingly.

Summarizing the results, we describe the procedures to obtain the
following desirable far-field quantities:

I. The bistatic far-field at wavenumber k :
1. Illuminate the object by a plane wave with wavenumber k .
2. Use a probe oriented in both the ŷ and ẑ directions to measure

the near-field transverse components Ey and Ez along a planar
surface.

3. Use Eqs. (20), (22) and (23) to calculate the bistatic far-field.

II. The bistatic range profile at a given direction (θ, φ) :
1. The desired coordinates of Fourier space data points are along a

radial line and they are given by

px = k(sin θ cos φ − sin θi cos φi) (24)
py = k(sin θ sinφ − sin θi sinφi) (25)
pz = k(cos θ − cos θi). (26)

2. Find the Fourier-space data at (px, py, pz) from the nearest avail-
able sampled data points using an interpolation process.

3. Take the Fourier transform of the interpolated data with respect
to p and the result is the bistatic range profile at the given (θ, φ)
direction.

III. The microwave image for a given observation angular window
(θmin, θmax) and (φmin, φmax) :
1. Set the Fourier-space data outside the observation angular win-

dow equal to zero.
2. In order to use the efficient FFT algorithm, the new sampled

points should be in a rectangular grid format.
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(a)

(b)

Figure 4. Accessed Fourier space by frequency and angular diversity
with (a) normal incidence mode, (b) oblique incidence mode.
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3. Obtain the Fourier-space data of the above rectangular grid points
from the nearest available sampled points using an interpolation
process.

4. Apply the 3-D Fourier transform to the interpolated Fourier-space
data to reconstruct the image. The resultant image is the 3-
D bistatic image of the object for the given observation angular
window.

4. RESULTS AND OBSERVATIONS

In this section computer simulation and experiment setup for bistatic
range profiles and 3-D image reconstruction are studied. Results ob-
tained from the far-field data and the near-field data are compared.
Finally, a 2-D near-field imaging experiment is provided.

4.1 Simulation Results

Assume that the testing object consists of thin wire scatterers.
The geometry of the object is shown in Fig. 5. Four vertical wires,
each with a length of 20 cm , are centered at (−25 cm, 0 cm, 0 cm) ,
(0 cm, 0 cm, 0 cm), (−15 cm, 20 cm, 5 cm) and (−15 cm, −20 cm,
5 cm), respectively. A z-polarized plane wave is incident in the +x
direction, i.e., we have θi = 90◦, φi = 0◦ . The frequency is uni-
formly incremented from 7 GHz to 13 GHz with a total of 64 fre-
quency points. The method of moment is employed to calculate the
scattered field, where the mutual coupling among wires is negligible
due to their adequate separations.

In the near-field receiving configuration, the receiving plane is on
the x = −4 cm surface. A y-polarized probe and a z-polarized probe
are used to collect the near-field data. To avoid aliasing effect, the
sampling spacing ∆d and the frequency increment ∆f should satisfy

∆d ≤ λmin

2
(27)

and
∆f ≤ c

2Dmax
(28)

respectively, where λmin and Dmax are the minimum wavelength and
the maximum dimension of the testing object respectively. In the
following, ∆d is chosen as 1 cm and the synthesized aperture size
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Figure 5. Geometry of thin wire scatterers.

is 128 cm × 128 cm . The frequency increment is ∆f = 100 MHz and
the number of frequency points is 64.

We first calculate the y-polarized and z-polarized received field
Ēs(x = −d, y, z) at each sampled position and each sampled frequency
and then use Eq. (20) to obtain the Fourier space data Γ(p̄) .

As we have mentioned in Section 3, bistatic range profiles can be de-
rived from the received near field data. Given an observation direction
(θr, φr) , we use Eqs. (24), (25), and (26) to calculate the correspond-
ing rectangular p-space coordinate. Then an interpolation algorithm
can be applied to find the received Fourier space data. The bistatic
range profile at the given direction can be obtained by taking the in-
verse Fourier transform of the interpolated Fourier space data. The
dashed curve of Fig. 6 is the range profile at θr = 90◦, φr = 180◦ ,
which is in the opposite direction of the incident wave and has a zero
bistatic angle. The bistatic range profile can also be derived from the
far field data directly calculated using the moment method. The result
is shown in the solid curve of Fig. 6. One can see that these two curves
match very well. We also compare bistatic range profiles at θr = 90◦ ,
φr = 165◦ (which is on the x-y plane) and at θr = 75◦, φr = 180◦
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Figure 6. Near-field and far-field bistatic range profiles with a bistatic
angle of 0◦ .

(which is on the x-z plane) obtained from the near-field data and the
far-field data, and the results are shown in Fig. 7 and Fig. 8. Both
directions have a bistatic angle of 15◦ . However, the former is in the
specular direction and the latter is not. The two curves in Fig. 8 do not
match very well and the dashed curve has a poorer resolution. Note
that the Fourier space data obtained from near-field measurements is
not a direct method. In the above receiving configuration, the scan-
ning aperture does not contain fields scattered from all directions. For
example, the field scattered in directions outside the following coverage

tan−1 40
64

= 32◦ < θ < 148◦ = 180◦ − 32◦ (29)

90◦ + 32◦ = 122◦ < φ < 270◦ − 32◦ = 238◦ (30)

will not be received by the scanning probe. This will limit the accu-
racy of the derived Fourier space data and therefore the bistatic range
profile.

For near-field images, the eight-nearest-neighbor interpolation algo-
rithm is employed to obtain the Fourier space data in the rectangular
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Figure 7. Near-field and far-field bistatic range profiles with a bistatic
angle of 15◦ when θr = 90◦ , φr = 165◦ .

Figure 8. Near-field and far-field bistatic range profiles with a bistatic
angle of 15◦ when θr = 75◦ , φr = 180◦ .
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grid format, so that the 3-D FFT can be directly applied to the Fourier
space data to obtain 3-D images.

It has been indicated that the appearance of reconstructed image
depends on the observation angular window available [5, 10]. With
the near-field receiving configuration, the maximum angular coverage
of the Fourier space is spanned within 0◦ < θ < 180◦ and 90◦ < φ <
270◦ . To predict the reconstructed image for a given angular window,
we can artificially set the Fourier space data outside the given window
to zero and then apply the 3-D FFT to the windowed Fourier space
data. Therefore, the reconstructed image for any given angular window
can be obtained. Figures 9(a) and 10(a) show the Fourier space data for
the angular window 0◦ < θ < 60◦, 120◦ < θ < 180◦, 90◦ < φ < 270◦

and for the window 60◦ < θ < 120◦, 90◦ < φ < 270◦ respectively.
The corresponding reconstructed images are shown in Figs. 9(b) and
10(b) respectively. In Fig. 9, the angular window does not contain the
specular aspects, which are in the plane of θ = 90◦ . In this case the
dominant contributions to the scattered field are from the end points
of wires. We can easily see that the reconstructed image of Fig. 9(b)
reflects end points of the wires. This is consistent with the prediction
made by [5, 10]. While in Fig. 10, the angular window contains the
specular aspects. Therefore the shape of wires is clearly reconstructed.
From the above examples we can make following conclusions: With
the near-field configuration, we can derive bistatic far field from the
received near field. We can obtain the 3-D image of any observation
window by first applying a suitable angular window to the derived
Fourier space data and then taking the 3-D FFT of the windowed
data.

4.2 Experimental Results

Figure 11 shows the setup of our near-field experiment system. An
Arra X820 rectangular horn antenna is used to illuminate the test-
ing object. A probe, an open-ended WR-90 rectangular waveguide,
is mounted on a NSI-233 planar scanner to receive the scattered near
field. The planar scanner is controlled by stepping motors and can
move along the y-direction and z-direction. The measurement sys-
tem also includes an Hughes 8010H traveling wave tube amplifier, an
Avantek AWT-18235 low noise amplifier, and a HP8510C network an-
alyzer. All measurements are controlled by a personal computer via
an IEEE-488 bus.
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Figure 9. Near-field bistatic image for angular window φ = 90◦ ∼
270◦ and θ = 0◦ ∼ 60◦ , 120◦ ∼ 180◦ . (a) Fourier space data, (b)
reconstructed image.

Figure 10. Near-field bistatic image for angular window φ = 90◦ ∼
270◦ and θ = 60◦ ∼ 120◦ . (a) Fourier space data, (b) reconstructed
image.
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Note that in the above configuration, the object is obliquely illu-
minated rather than normally illuminated and the angular range cov-
ered by the scanner is φc = 2 tan−1 D

2d , where D is the total scan-
ning length and d is the distance between the reference point and the
scanning plane. In earlier simulation, we can calculate the theoretical
range-corrected field for each frequency. In the measurement, however,
we have to find a calibration method so that range-corrected fields can
be accurately obtained.

The proposed calibration procedure is given as follows:
1. Use the horn antenna to illuminate the testing object.
2. Use the y-polarized and z-polarized probe to measure the scattered

field at each scanning position and denote them by Em
t,y(−d, y, z, k)

and Em
t,z(−d, y, z, k) .

3. Replace the testing object by a reference object, repeat step 2 and
denote them by Em

r,y(−d, y, z, k) and Em
r,z(−d, y, z, k) . It is prefer-

able that the reference object is a point-like object, e.g., a small
sphere if the scattering aperture is along the y-z plane.

4. Remove the reference object, repeat step 2, and the measured fields
are the clutter fields. Denote them as Em

c,y(−d, y, z, k) and
Em

c,z(−d, y, z, k) .
5. The calibrated field can be obtained by subtracting the clutter field

obtained in step 4 from those obtained in 2 and 3 respectively. De-
note them by Et,i and Er,i . These calibrated field are give by

Et,i(−d, y, z, k) = Em
t,i(−d, y, z, k) − Em

c,i(−d, y, z, k) i = y, z (31)
Er,i(−d, y, z, k) = Em

r,i(−d, y, z, k) − Em
c,i(−d, y, z, k). (32)

From the calibrated data, we can obtain the range-corrected Fourier
space data as follows:
1. Take the 2-D Fourier transform of Et,i(−d, y, z, k) with respect to

y and z for each frequency k , and denote it by Ẽt,i(ky, kz, k) .
2. Take the 2-D Fourier transform of Er,i(−d, y, z, k) with respect to

y and z for each frequency k and denote it by Ẽr,i(ky, kz, k) .
3. The range-corrected Fourier space data of the testing object can be

obtained by

Γi(ky, kz, k) =
Ẽt,i(ky, kz, k)
Ẽr,i(ky, kz, k)

|ρo(ky, kz, k)|1/2 i = y, z (33)
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Figure 11. Experiment setup for the near-field measurement.

where ρo(ky, kz, k) is the theoretical far field bistatic RCS of the ref-
erence object, which can be numerically calculated for a given shape
of the reference object and a given illumination.

The division of Ẽr,i(kx, ky, k) in Eq. (33) can result in a large error
if Ẽr,i(ky, kz, k) is small. To see this, note that ky, kz represent the
angular spectrum, or the propagation direction of the scattered field.
Relations between the observation direction (θ, φ) and (kx, ky, kz) are
given in Eq. (8). Note that after applying the 2-D FFT, the angular
support of the Fourier space is the half-space, 0◦ < θ < 180◦ and
90◦ < φ < 270◦ . However, in the near-field measurement arrangement
shown in Fig. 12 , the extension of φc is 2 tan−1( d

2D ) . The field scat-
tered by the testing object or the reference object will not be received
by the probe when the scattering direction is beyond φc . Therefore,
Ẽt,i(ky, kz, k) and Ẽr,i(kx, ky, k) will be very small when the angular
spectrum (kx, ky) is beyond the extension angle. In those regions,
the division of Ẽr,i(kx, ky, k) , can result in large a error. Therefore,
Γi(kx, ky, k) outside the extension coverage angle φc should be dis-
carded.

In the following experiment, the testing object consists of three
vertical thin cylinders with lengths of 30 cm and centers located at
(−4 cm, 6 cm), (12 cm, 0 cm) and (0 cm, −8 cm) . The illuminating
wave is z-polarized and the incident angle is φi = 131◦ .
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Figure 12. Effective angular coverage of the scanning aperture.

Although the scanning aperture can be moved in both the y and
z directions, the scanner is designed to record the data at a single
frequency for each scanning process. If we use N step frequencies, we
have to repeat N times of 2-D scanning. The measurement would take
a long time and the scanner often failed during experiment. Therefore
we only scan the probe in the y direction and the following experiment
is a 2-D near-field imaging. Because the probe is only scanned along
one direction, we can use a small vertical cylinder instead of a small
sphere as the reference object. In this experiment, a small vertical
cylinder with radius 0.5 cm and length 30 cm is used as the reference
object. Its center is chosen as the coordinate origin.

The receiving probe is scanned along the y-direction with 1 cm
increment and has a total scanning length of 86 cm. The scanning line
is at a distance d = 60 cm from the reference point. The frequency is
uniform sampled from 8 GHz to 12 GHz with a total of 51 frequency
points.

We measure the clutter field, the scattered field of the reference
object and the testing object at each scanning position and each fre-
quency. We then follow the procedure as stated above to obtain the
range-corrected Fourier space data (Fig. 13(a)). We retain only those
data within the extension angle φc and discard all other data outside
φc . Note that the factor of oblique incidence has been considered in
the Fourier space data as mentioned in Fig. 4(b). We then take the
inverse Fourier transform of the Fourier space data and the result is



186 Leou and Li

Figure 13. (a) The range-corrected Fourier space data and (b) the
reconstructed image.

shown in Fig. 13(b). A clear three-point image is obtained. It was
shown that, with an inverse synthetic aperture radar imaging tech-
nique of frequency diversity and bistatic angular diversity moving on
the θ = 90◦ plane, the reconstructed image would be the projection
of the object [5, 10]. We can see that Fig. 13(b) is the projection
image of the testing object. This example verifies the effectiveness of
our proposed calibration procedure and near-field image reconstruction
algorithm.
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5. CONCLUSIONS

We have studied the relationship between the Ewald sphere represen-
tation and the bistatic Fourier space data and described the procedure
to obtain far field quantities, including bistatic RCS, bistatic range
profiles and bistatic images, from the Fourier space data. We then de-
scribed the relationship between the Fourier space data and the near-
field measurements, and discussed how to obtain the Fourier space data
in the Ewald sphere when the object is normally or obliquely illumi-
nated and its scattered fields are received by a probe scanning over
a planar aperture. We also showed how to obtain far field quantities
from near field measurements. We have carried out the simulation of
near-field configuration. The moment method is used to calculate the
near fields and from those data, we can derive bistatic range profiles
and 3-D images. We also setup a near field measurement system and
propose a calibration procedure so that the range-corrected Fourier
space data can be accurately obtained. A focused projective image
has been obtained from near field measurements with 1-D scanning.
Simulation and experimental results have verified the effectiveness of
our algorithms.

Note that in our derivation we have assumed that the antenna pat-
tern of the receiving probe is omnidirectional. We have also assumed
that the object is illuminated by a plane wave. In fact, the probe
has its own radiation pattern and the wave illuminated by a horn is
not a plane wave but a spherical wave. Techniques for probes pattern
compensation have been proposed for antenna near field measurements
[1]. These techniques can also be applied to this problem. However,
when the object is illuminated by a spherical wave, the relationship
between the Fourier space data and near-field measurements is more
complicated and it needs some further investigation [11].
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