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1. INTRODUCTION

It is known that chiral materials are characterized by three indepen-
dent constitutive parameters and they exhibit intrinsic handedness in
their interaction with electromagnetic waves. Till now significant re-
search progress has been achieved on various electromagnetic charac-
teristics of artificially composite chiral materials, and much theoretical
effort has been spent on the dyadic Green’s function theory in chiral
media [1-14]. Furthermore, the radiation characteristics of canonical
sources in various chiral regions have also been investigated, such as
(1) dipole antenna radiation in the presence of a homogeneous or a
radially inhomogeneous chiral sphere, (2) the radiation and scattering
from a thin wire antenna in a unbounded chiral medium, and (3) elec-
tromagnetic fields excited by a circular loop antenna in a unbounded
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chiral medium and above a chiral half space [15-27]. Also, chirolens
antennas and chiral slab polarization transformers for aperture anten-
nas have been proposed by some researchers recently [28, 29]. In the
previous studies, the dyadic Green’s function (DGF) in chiral media
has often been employed, and therefore, the formulations of DGF in
single layer, two-layer, or radially arbitrary multi-layered cylindrical
and spherical chiral regions have been successfully achieved using the
eigenfunction expansion method combined with the scattering super-
position principle [10-13, 22, 23].

In contrast to the previous work, this contribution aims at solv-
ing the problem of electromagnetic radiation from spherical arrays of
dipole antennas on spherical chiral substrates. To the authors’ best
knowledge, the near- and far-field analysis of a spherical array of point
dipoles has just been considered recently [30, 31], and the spherical
antenna arrays have many practical applications in satellite communi-
cation [32, 33]. On the other hand, the interaction of electromagnetic
waves with multi-layered spherical structures also has particular ap-
plications in the fields of bioelectromagnetics, for instance, the human
head can be approximately treated as an inhomogeneous multi-layered
sphere [33-36]. In the following sections, the mathematical treatment
is based on the DGF in the form of an eigenfunction expansion in
terms of the normalized spherical vector wave function. This proce-
dure is very general, compact, and straightforward. Corresponding to
different orientations of dipole antenna arrays, the generalized, but an-
alytical form of all field components are derived at first in both far and
near zones. Secondly, numerical examples are presented to show the
variation characteristics of the far-zone field for some array patterns of
dipole antennas and the chiral effect is taken into account, and natu-
rally, this study is also applicable for the isotropic spherical substrate
case.

2. GEOMETRIES OF THE PROBLEM

Figs. 1(a) and (b) show two geometries of a periodic dipole antenna
array on a chiral sphere and a single layer chiral spherical substrate,
respectively.

The constitutive characteristics of the chiral media in the frequency
domain with a time dependence e /! are described by

D =¢eE+jéB , (1a)
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(b)

Figure 1. Geometries of a dipole antenna array on a chiral sphere and
a single layer spherical chiral substrate.

— —_ B
H = jéE + P (1b)

where €, p and &. are the permittivity, permeability and chiral ad-
mittance, respectively. The volumetric electric current density of the
periodic dipole antenna array on the surface R = a in Fig. 1 (a) is
described by

T 2qm
 r 5<Rf_a>5(ef_%)5(¢_%) 1 2
J(R) = Z Z a2sin 0’ (Cz()q)aﬂ + Cz()q)a’)

(2)

are two

where p=1, 2,..., P; ¢g=1, 2, ..., @; and C]g}]) and ngg)

direction factors, respectively. For instance, when C’pg = 0, all the
dipole antennas are just in the €, -direction. In Fig. 1(b), the region in
0 < R < a is a perfectly conducting sphere and the one in a < R <b
is chiral. The volumetric electric current density is supposed to be
similar to that in (2), i.e.,

2
R CEL (0' - %) 5 <<,0/ - g) . N
J(R) = Z Z R (Cpq)@, + Cp.)e)
p=1q=1

3)
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3. FIELD DISTRIBUTIONS

3.1 Case 1

In the first case, the electromagnetic fields excited by the periodic
dipole antenna array in the inner and outer regions (where R < a and
R > a) are determined as follows:

—jw,u///(m (RE)-TR®)dV', i=1,2  (4a)

/ / G““) R®E)-T(®) av’ (4b)

where
CURIE) =V x G R®F) - wpe(1 - 6)G  BF)  (4c)

with the subscript v denoting the volume occupied by the dipole array,

and the Kronecker delta defined as ;1 = { é’ z i (1) . According to
= (1a)

the principle of scattering superposition, the electric DGF G,
is de-composed as:

(RIR)

G RR) =57 ®/R) + G RIR) (5a)

where (:?S’Z)(E\E/) is the DGF in the unbounded chiral region and it

takes the same form as in [19] except that the irrotational region term
there has been omitted. It is further stated as:

=(<,2) ==
G~ (RIR)
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where

(2n+1)(n —m)!

Dinn = (2 - om0 1) (n )]

; (5¢)

ki = Fwpge + Vwlep + w?p?e2 ; (5d)

while €, is the r_adia_l/unit vector of the spherical coordinate system
(R,0,¢),and 6(R—R) is the Dirac delta function. ki are the wave-
numbers corresponding to two circularly polarized modes supported
in chiral medium, i.e., the right- and left-handed circularly polarized
1, m=0
.. . 2 _ 2 — )
waves (RCP: +; LCP: -), and k* = w”ue, dmo {O, mA0 The
definitions and orthogonal properties of the normalized spherical vec-
tor wave functions V(elgm(k:jL), Ve (ks) W(elgm(k:_) and We (k)
can be found in [19], and the prime in (5) indicates the coordinates
(R',0',¢") of the source. The scattering DGF in different regions in
Fig. 1(a) can be constructed according to the multiple transmissions
and reflections as follows:

= (1a

®F) - WZM;DWL 41T (k)
+A(2“)W2mn(kz_)}vz (k) + [A<3a>vzmn(k+)
n A(4“)Wzmn(k,)}W%mn(k:,) , R<a; (6a)
éemz) ®R) 27T(]<;+j+ - i;pm" [B(la)v(l) (ko)
+ BT (ko) | Ve () + [BEIVA) (ko)
+B<4a>W%1;n(ko)}W’imn(k_) , 0 R>a; (6b)
where A% and BG6®(s = 1,---,4) are unknown coefficients to be

determined by the boundary conditions at R = a , which is shown
in Appendix 1. So, by substituting (2), (5) and (6) into (4), the elec-
tromagnetic fields excited by the periodic dipole antenna array can be
obtained. Here both near and far fields are taken into account, i.e.,
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o0 n

BB = - 2\/§7rk + k) ZZZZDW

p—lqlnlm(]

n
o

+ | ACIVE (k) + ACTWED (k)| Oofp)
2)5R,0, )7 (R,0, —
+ [ABIVERI k) 4 ACOTE ) 0
R<a; (7)

DD

—(R,0, R0, —
[V el + T (g

2a )
By () = 2\/§7rk ko) ;ST im0
{[BOOTEE (k) 1 BETDE) ()] o)
N [ (3“)V( )(R,@,go)(k )+ B(4“)W(1)(R9“0)(ko)]01(,;)}
R>a; (8)
and

g o(B) = =373 3" 3" Do

(R) =
2\/5 7T(k‘+ +k_ )770 p=1g=1 n=1m=0

R 9, —(R,0, _
{ ?) (k+)C]()(1]+) - k%W%mncp)(k—)Clg}] )
a —R 0, a)Ix7r R70»
+ [a¢ >V D ley) = ACOWED (k) )
a R 9, a7 (R,0, —
+ [ACOVERD oy ) — AW )] )
R<a; 9)

Q oo n

P

p—lq 1 n=1m=0
{ B(la)Vg )(R,e,w( ko) — BEITRO) )] o)

— a 9, _
+[ B )V%)(RG,sO)(kO)_ B )W(glr),ff w(ko)}ng)}
R>a; (10)

To simplify the representations, the following shorthand notations are
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defined:
X%”W”:_Edm(ﬂw)gamyﬂ , (11)
0,_%’ @,_Q%ﬂ'
X%”mﬂzﬂﬁE@%&4¥E%MH , (12)
X%ﬁ”(“l—) = —P[CLj ) F (£)P3S105% ;o (13)
9/:%’ (P/:Z’q?ﬂ'
X$Wﬂ> +(=)P{CL054 ) F PaSLiY o (14)
and
~,  dP™(cosf') ~
/o n ! m
P = — Py, = i G’P" (cos®') ,
Sl = St (my') , Cl = C?S (m¢') ,
cos sin
j% = jn(ksa), i = h{ (kza),
.19
u 1 d
OhY = o S R (ke R)]r=a |
14) (als) 2) v(alt)
C(q )= ngq)ngo +ngq)X§9 ’
1) _ (1) y(ad) 2) y (a£)
i) = C(q)Xz + qg(jxig :

where j,(-) and h%l)(-) are the nth-order spherical Bessel functions of
the first and third kinds, respectively; 7. the characteristic impedances
of RCP (4) and LCP (—) modes; P}'(-), the associated Legendre
function, and

P = 5[ —m 4 )+ )PP (cos ) — PP eosd)] . (15)

D 1 _ m—1 / m—+1 /
P= s [(n m+1)(n+ 1) P (cos¢') + P (cosa)], (16)
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are very useful for further reduction. Especially [37],

mHgin [L(n +m)r] T (250
]31/’9':900 = - [j;r—i_(n)]zr:—glf +1) ) (17)
o) 2m cos [L(n +m)x| T <n+7§+1> N

Nas (n;m+1>

Obviously, the field expression (7)—(10) is valid for the fields in near-
and far-zones, and their scalar forms can be easily obtained from above.
As a special case, when the chirality admittance is zero, i.e., ki =
k_ =k, (7)-(10) are reduced to the isotropic case. Now two typical
cases are to be discussed:

1. Electrically Large Chiral Sphere (kya >> 1)
Under such circumstances, the following expressions can be ex-
ploited for the spherical Hankel function and its derivation, i.e.,

a ~nt1cos(kra) a ~ntSin(kra)
j4 ~ (=) ===, 9jt ~ (=) = ——
k+a kia
pa N ejkia o ' nejkia (19)
1~ (-J) E ) ~ (—4) kra

so that the unknown coefficients A®) and B®) (s =1,---,4) can be
simplified from Appendix 1, while the radiation factors are simplified
as:

a al— . nejk+(_)a = =
XD e (e P, (£)P3S) . (20)
° +(7)01 9’—%, Sﬂlzzé‘"
B Jky(—ya ~ ~
XD & (S [+(-)PICL + P31 . @)
° +(_)a 9/:%, 90,:2?77"
@) ()" 5
Xitp = m |:—P1/C; COS(]{?+(,)CL)
+ (%) Py sin(h )| , (22)
/I s r—_2qm
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(@))(a—y (=)™ Iy
X = L — [—(+)P{c;sm(k+(_)a)
+(-)
+ LS, cos(k+(,)a)} , (23)
9/:%7 99/:%

2. In the Far-Field Zone (koR >> 1)
Since k,R >> 1, we approximately have

V(l)(g’v(k‘ )~ — eIt (=)™ (F iPS. — P,C )(€9 + jey) (24a)
omn A0 \/ikOR] e T R e

WOOL ) ~ _ﬁ(_-)n(;-ﬁs + PyCy) (8 — je,) , (24b)
omm V0 ﬂkoRJ ST I IR

where the definitions of 131, ]52, S. and Cj are similar to those given.
Furthermore, the radiated fields become

—(20) w,uejkoR P Q oo n
By (R) = drkoR(ky + k_ Z 2.2 2
p:l q=1 n=1m=0

{(i]pls — BCy)[BUCS) + BOIC) (e + j,)

+ (£ RS, + PG BEICH) + BUICQN (@ - je,) |
(25)

“ jkoR >
550 (R) = " Ark ?Zi ko) ZZ 2. Z

p 1g=1 n=1m=0
' {(iﬂgﬁc - ]3208)[3(1a)0(+) +BOICS (e + jey)
— (£§P1Se + PoCy)[BCICSH) + BU ) (g — je@)} ,
(26)
Evidently, (25) and (26) indicate that the far fields radiated by the
periodic dipole antenna array are just the sum of RCP- and LCP-

mode contributions, which are reducible to that of the special case of
a single dipole antenna radiation shown in [19].
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3.2 Case 2

By following the similar procedure used above, the DGF in the chiral
layer and the outer region can be constructed as

= (16,

a' als

~ (1b)

JE/E)=C5TRE)+ GV RE),  a<R<b; (27a)

where

(16)(

e

E\E/)

QI

[e.o] n

k++k ZZDM

n=1m=0

| { |:A(lb)vemn(k‘-l-) + A(2b)Wemn(k—)
+ AT (ky) + AT ()|,
+ (AT e (k) + AP Wcanc )
+ AV (ky) + AT (o) [T

+ AT e (k1) +A<10b>W (k)

o

+A(1”’)V(e) (k+)+A(12b)W(1)

e
mn
o

[A“%)v (k) + ACOW < (k)

(k)7 ()

o J o

B L . /
+A(15b)V(e1,)nn(k+) +A(165)W(el) (k-) W (/f—)} ; (27b)

(2b) =
o (BR) = s ZZDmn

n=1m=0
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_ _ /
+ BV (ko) + BEWE) (ko) | WY, (k_)} ,
R > b; (28)

where the unknown coefficients A(?) and B (with s = 1,---,16;
=1, ---,8) are also determined by the boundary conditions at R = a
and b, and their expressions are shown in Appendix 2. So, inserting
(28), (29) and (3) into (4) leads to the electromagnetic fields excited
by the periodic dipole antenna array given by:

Egvbe)ﬁo(ﬁ) - 2\/_7.‘_ k: +k_ ZZ Z Z Dinn

plqlnlmO

. {[ BOOTDERER) g B(2b)W(elr)’Ef,9,s0)(k0)}élg;-)

| [BEop 0w )+B(4”)W( VR02) (0] )
» (1) (R,0, 10 C
+_ BONVLETEE (o) + BOOTWLL ”(fﬂo)_czgif)

+ B )V(e)(Ra“")(k; )+B(8b)W( )(Rew)(ko)' 5()} ’

and

P Q

() 7 jwp —
KR,G,cp(R) 2\/—7_[_ k++k ZZ ZmZ:ODmn

p—lqlnl

] {[ (lb)V( (R, G’W)(k ) — B(2b)W£)(R G’W)(ko)}(j’g)

(1)(R,97¢)(k0)' o)

e
,mn pq

%I

+ B(3b)v(51)(R990)(k0) _ gl
—(1)(R,0, —+(1)(R,0, 1=
+ _ (5b)V( )( @)(ko) ( )W( )( @)(ko)_ C}():]l—)

e e
o o

<l

mn
o

L [BETDESR G et g 5()}7
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where

~(14) _ (1) 3 (015) 2) y(b1x) ~(E) (b£) 2 (bi)

cil )—C’[(,q)Xz(p +c;q>Xi9 , CP _c;q>X +C2 )X
(b1t) - (alt) (bt) _ (ad)

Koo =Xegn'|, Ly Xeeo=%ceal,

(31)
In the far-field zone (kgR >> 1), the radiated fields become

wueﬂk oR >

F(20)
Fop () = ArkoR(ky + k) ZZ 2 Z

plqlnlm()

’ {(ijﬁlsc - ﬁQCs) [B(lb)él();r) —+ B(3b)6'z();)
+ B(5b)51§}1+) + B(?b)é}(ﬂl}-)} (@ + je,)
+ (£5P1S. + DBCy) [B(%)é]g;) T+ BUEE)
BOGGH + B | (@ - m)} o (32)

. - jkoR P Q 0o
7y (R) = - 47rk0§:ll:i+k PIIDIP M CI

p:l q=1 n=1m=0

. {(ijf?lsc - RO [BVE) + B

+B(5b)5‘]§}1+) +B(7b)641(7(11—)} (@ + je,)

— (£jPiSe + PCY) [B(%)é}gg) T BUEC)
NG + BCL ] @ - jao)} )

Again, (32) and (33) indicate that the far fields due to the periodic
dipole antenna array are just the sum of RCP and LCP modes. In
addition, if k+b >> 1, all the unknown coefficients {A(Sb), BU®Y and

the quantities {X%b;;)(bl_), X%b;g(b_)} are simplified greatly, i.e.,

FIDO1) €O

~ |\ —

0¥ J k+(,)b

JPICLF () P3S]
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Ik ()b ~ -
XU s (g [HOPICL £ P . (3)
° k“l‘(_)b T 2qm
9/_%790/: g)
on-) _ D" 5
X§<P BN { PO cos(ky(yb)
+ (F) Py, sin(ky (b)| . (36)
9/:%’@/:%
o+)(b—) (_j)n+1 . DI A
X Y [ (+) P Csin(ky (-)b)
T P3S, cos(hy(b)] , (37)
7 s /29w

Correspondingly, the polarization state of the radiated fields can be
represented by the point on the Poincare’s sphere with a latitude x of

o e
siny = ;

= ’L(_b)‘z N ’LSI_)) 5 (38a)

and

3

+ BWEE) 4 BOHEIH | B<8b>6*1§};>]} ; (38¢c)

where siny € [—1, 1] is the ellipticity of the polarization ellipse and
it indicates the right- and left-handed elliptically, circularly, and linear
polarized waves, respectively.



252 Yin et al.

4. NUMERICAL RESULTS

Based on the above derived mathematical formulas of the field dis-
tributions resulted in from the above model, the normalized three-
dimensional field patterns Egb) in the far zone radiated by eight dipole
antennas are demonstrated in Fig. 2 at first. Certainly, convergence
of the analysis is checked in detail, and forty terms are needed for
the summation with respect to the index n of the spherical Bessel
and Hankel functions. For mth-order harmonic current excitation, the
summation index n should begin from n = m, since we must have
n > m in the associated Legendre function P}'(-).

In Figs. 2(a)—(c), the parameters chosen for the calculation are
e = 35e0, p = Lo, a/A = 1.0, b/A = 1.5, C\Y) = 1.0, and
0153) = 0.0. The locations of eight dipole antennas are determined
by 8/ =90°, Q =8,and ¢=0,1,2,...,7. Here the lossy effect of the
coating is not taken into account, in order that the attenuation by the
medium can not mask the chiral effect in the far-zone fields. Actually,
the constitutive parameters of chiral materials are the function of the
operating frequency, respectively, but the above parameters assumed
are all in a physically realizable range. Since a(b)/A ~ 1.0, such a sin-
gle layered (non)-chiral sphere does not have too large electrical size.
The field expression in (32) and Appendix 2 are employed to calculate

the far-zone field component Egb) . For case (a), since we let £, = 0.0,
it is just the example of the ordinary isotropic coating, and the radiated
field is nearly confined within the range of 30° < 6 < 150°. However,
for cases (b) and (c), due to the effects of chirality admittance, the
radiated field pattern is spread in all directions and more resonance
peaks are observed.

As an another illustrative example, Fig. 3 depicts the normalized
radiation pattern |E&2a)| of four dipole antennas on a chiral sphere,
and the parameters chosen for the calculation are a/A = 1.0, ¢ =
3.5eg, = 1.5u0, and & = 0.003S . Also, the lossy effect of the chiral
sphere is not taken into account here due to the same reason.

In Fig. 3, the locations of four dipole antennas are determined by
0 =30°, Q=14, ¢=0,1,2, and 3; and C})) =1 and C{2 = 0. It
is clear that in the forward direction (6 = 180°), |E4E,2a)| often reaches
the maximum value for some special angles ¢, and similar conclusion
can be drawn for the far-zone field component |Eé2a)| . On the other
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Figure 3. Normalized three-dimensional far-zone field patterns |E. 2a)]

for four dipole antennas on the surface of a chiral sphere.

hand, both |E<£,2a)] and |Eé2a)] can be enhanced with the increasing
of the chiral admittance. But practically, the magnitude of &. is also
governed by the other parameters of the chiral medium.

Finally, Fig. 4 depicts the ellipticity of the far-zone field in the for-
ward direction of § = 180° for eight dipole antennas on a single layer
spherical substrate. The parameters are chosen to be € =3.5¢p, u=
1500, a/A=1.0, b/A=15, C{f) =1, and C{2 =

In Fig. 4, the circular dot hne stands for Ec = 0.001S , while
the square dot line corresponds to & = 0.003S. The locations of
eight dipole antennas are assumed to be 6 = 30°, Q = 8, and
q=0,1,2,...,7. Clearly, the far-zone field in the forward direction
is usually in the right- or left-handed elliptically polarized state, but
for some special azimuth angles, nearly right- or left-handed circularly
polarized wave could be achieved (sinx ~ +1.0). Also, for the given
chiral admittance (£ = 0.00395), the polarization state of the scat-
tered field can be changed rapidly with the .

5. CONCLUSIONS

The canonical problems of radiation by a dipole antenna array in the
presence of a chiral sphere and a perfectly conducting sphere coated
with a single chiral medium have been formulated and examined, re-
spectively. The technique of dyadic Green’s function expressed in terms
of the normalized spherical vector wave functions has been imposed in
the mathematical analysis. This method is very general as well as
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Figure 4. The ellipticity of the polarization ellipse as a function of
the azimuth angle ¢.

straightforward to apply. Here the orientation of the dipole antenna
array can be arbitrary, but the coupling and the phase difference be-
tween the adjacent dipole antennas are not taken into account. The
formulation performed for calculating the radiated fields in both the
near and far zones is also reducible to or valid for that of the simple
isotropic case.

APPENDIX 1

Substituting (5) and (6) into the following boundary equations,

er x GV EBIR) = er x P (RIR) (A1)
2R %v « GUEE) - we. Y RBE) = on x v x CE®F)
0
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leads to, after tedious mathematical manipulations, the following four
sets of equations:

r A 5 T he
A(2a) 5 | O
[D] B(1a) = _k+ h‘j’:r ) (A?’)
L B(2) | L Oh
r AG) T —h®
Al4a) oh.
[D] B(3a) = _k%r he ) (A4)
| B(4a) | | —0h —
Jg g2 —hg —hg
2j%  —dj*  —0hd Ohg
D] = | 7+ ; 0 0 A5
DI= 5" o hohg nond | (45)

95 0j°  —ldht —lidhg

and
jt = jnlksa), G =D (kea), b= bV (koa),

a 1 0 /- /

074 = tra OR [R Jn(k+R )}R,:a ,
o 10 15,0 /

Ot = (R (e B)]
a _ 1 0 /1.(1) /

O = o [R hD (ko R )]R/:a :

13 3
ho =/ /,]= +¢€
Voo "V ok

APPENDIX 2
Substituting (30) and (31) into the following boundary equations,

erx " RE) =0, R=ua (A6)
erx GL O (RIE) =en x G (RIR) (ATa)
1 _ _ _ o
e XV x "R - we. " (RIR)
=er X —V x G(za)(RU_%/) ;
0

(ATb)
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