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1. PRELIMINARY REMARKS

The problem of propagation of wave packets (henceforth WP, WPs, as
required) in an absorbing medium was addressed for the first time
by Sommerfeld [1], and Brillouin [2, 3]. They studied the propa-
gation of light in absorbing dielectrics within the framework of the
Lorentz model and analyzed the behavior of the group velocity de-
fined as U = (dkr/dω)−1 for real frequencies ω and for complex wave
numbers k = kr + iki. They showed that the group velocity U may
exceed the speed of light c and even become infinite or negative in
the absorption range of frequencies. It was also shown that for a pulse
that is switched on instantaneously at the boundary and then becomes
sinusoidal with a constant amplitude, there is a precursor wave prop-
agating with the speed of light c, while the main body of the pulse
propagates with a “signal velocity” S, significantly differing from U
in the absorption frequency range, where the wave dispersion is anoma-
lous. The signal velocity S was found to be positive everywhere and
smaller than the light speed c. A detailed asymptotic analysis of the
Sommerfeld-Brillouin problem and numerical calculations of the signal
velocity for the Lorentz medium were carried out in [4, 5].

During several decades after the appearance of Sommerfeld and Bril-
louin’s classical works, the cases of abnormal group velocity (U <
0 or U > c) were regarded as nonphysical. However, the theoretical
study of Garrett and McCumber [6] and the experiment of Chu and
Wong [7] availed new insight into the role of abnormal group velocity.
Instead of a unit-step modulated signal considered in [1–3], Garrett
and McCumber analyzed the propagation of a Gaussian-envelope mod-
ulated signal through a slab region of a medium having an absorption
line near the central frequency of the pulse. They have shown that for
a sufficiently thin slab, the envelope’s maximum propagates with ab-
normal group velocity. In particular, it was shown that the peak of the
pulse emerges at the instant predicted by the group velocity U even
if U exceeds c or becomes negative. Such a behavior is associated
with the reshaping which a pulse undergoes in a dispersive absorbing
medium, and does not necessarily imply a violation of the special rel-
ativity theory and its causation considerations. In other words, due
to the attenuation, various parts of the pulse might be differently af-
fected, thus leading to reshaping of the pulse envelope. Consequently,
in addition to propagation effects, the location of the peak of the pulse
might appear at a different location. When this is construed as actual
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motion of the envelope, for finite traveling distances speeds in excess
of the light speed may result.

Chu and Wong [7] measured the pulse velocity in samples of GaP :
N with a tunable laser and found that the measured values agree sat-
isfactorily with the calculated group velocity, including the frequency
range where U is abnormal and, in particular, superluminal. Thus,
their results have confirmed the predictions of Garrett and McCumber
[6]. An asymptotic analysis of Gaussian WPs in a Lorentz gas has
been performed in [8], where it was shown that the fast propagation
with U > c observed by Chu and Wong is characteristic for the early
stage of the motion of the WP, while the slow propagation with U < c
appears at long traveling distances.

The purpose of the present paper is to investigate the propagation
of WPs in absorbing media, for which the process of wave propagation
is governed by the telegrapher’s equation (henceforth TE), both for
WPs containing many oscillations, and for short single burst pulses,
henceforth referred to as solitary pulses, abbreviated SPs. Here we
aim to investigate the evolution of causal WPs that are emitted from
the boundary x = 0 into the domain x > 0 , within the framework of
the TE. In particular, we aim to understand where and when superlu-
minal and subluminal values of the group velocity appear as relevant
kinematic characteristics of WPs.

The question of WPs and their associated group velocities is not ex-
clusively of academic interest. Rather, there are important application-
oriented aspects. Every application of wave propagation to distance
measurement, be it in ionospheric exploration involving ionosonde ap-
paratus or geophysical applications involving scattering of elastody-
namic waves from underground structures, essentially is based on mea-
surement of time of arrival of pulses (in some cases, e.g., chirp radar
equipment, the signals are continuous and frequency modulated, but
the end effect is the same when the continuous signals are post-
processed in the receiver into short bursts). Thus knowing the pulse
velocity in the medium at hand, measurement of time of arrival facili-
tates the assessment of distances.
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2. INTRODUCTION AND BACKGROUND

The TE is a one dimensional wave equation given by

∂2u

∂t2
+

1
λ

∂u

∂t
= c2 ∂2u

∂x2
(1)

where henceforth c is identified as the characteristic velocity which is
equal to the phase velocity in the absence of damping or amplification
which are represented by the first order time-derivative term.

Numerous examples of waves in various absorbing media described
by (1) are presented in the literature. Several applications of the TE
to physical systems are mentioned below. Thus, for electromagnetic
waves in conducting media (semiconductors or dense, slightly ionized
plasmas, for which the electron collision frequency is much larger than
the plasma frequency), the parameters entering into (1) are given by

c = c0 , 1/λ = σ/ε0 (2)

where c0 is the vacuum speed of light, σ is the electrical conductiv-
ity and ε0 is the permittivity of free space. For a coaxial cable line
characterized by unit-length parameters: capacitance C, inductance
L, and resistance R, and with an ideal insulation between the coaxial
electrodes (i.e., zero shunt conductance), (1) is obtained for the inter-
electrode voltage, and its parameters are (see for example Stratton [9],
p.550)

c = 1/
√

LC = c0/
√

ε , 1/λ = R/L (3)

where ε is the relative dielectric permittivity of the interelectrode
spacer. For acoustic waves propagating in a slightly ionized gas in the
presence of an external magnetic field B, in the direction perpendic-
ular to the vector B, (1) describes small pressure perturbations [10].
For this case we have

c =
√

(∂ρ/∂p)s , 1/λ = σB2/ρ (4)

where c is the sound velocity determined by the isentropic derivative
of the gas pressure p with respect to its density ρ, and σ is the
electrical conductivity of the gas.

Beyond possible applications of the WP solutions of the TE to com-
munication and radar-type distance measurement, our analysis was
also motivated by the behavior of the classical group velocity

W (k) = ∂ω/∂k (5)
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in the presence of damping effects, and the analysis of WP solutions
of (1) provides an appropriate arena. In the present case the dis-
persion equation becomes complex, hence the classical group velocity
W (k) = ∂ω/∂k becomes complex too, in general. Inasmuch as the
group velocity is associated with the flux of energy through space, the
conceptual ramifications must be re-examined. The dispersion relation
associated with (1) is given below. The associated quantity W (k) is
real in two cases: (a) when the wave number k is purely imaginary,
and (b) when k is real and larger than kc = 1/(2cλ) = 1/La, where
La is the characteristic absorption length. In the case (b) the group
velocity is larger than the light speed c. The present paper continues to
study the role of the real group velocity in absorbing systems [11] (see
also [11] for earlier references). Our choice of the TE for the analysis of
WPs stems also from the fact that the TE is a second-order equation of
hyperbolic type, for which the solution of initial-, and boundary-value
problems for arbitrary signals propagating in a half-space can be pre-
sented in a closed integral form in terms of modified Bessel functions
and the value of the signal at the boundary [12]. This allows us, on
one hand, to ensure the causality of the problem of pulse propagation,
and on the other hand, to avoid cumbersome direct calculations of the
Fourier integrals for short and moderate traveling distances.

It should be noted that for WP solutions obtained in [6, 8] for the
Lorentz model, the group velocity U was calculated by

U = [(∂kr/∂ω)ω=ωc ]
−1 (6)

where ωc is the carrier frequency. For the Lorentz model, the group
velocity W defined in (5) is complex for real ω. For short traveling
distances the velocity of the envelope’s maximum V (t) was shown to
be close to U [6, 8], while for long distances V significantly differs
from U. Similar results were obtained in [11, 13] for whistler WPs
propagating in a magnetized collisional plasma, for which the form of
complex dispersion equation is quite different from the one following
from the Lorentz model. For large distances the Gaussian envelope’s
peak of a whistler WP is decelerated and its velocity V (t) may become
much less than U. As was shown in [11], for large times and distances,
any small section of a WP can be characterized by a local complex
frequency ω̃(x, t) and by a local complex wave number k̃(x, t). The
quantities ω̃ and k̃ are connected through a complex dispersion equa-
tion for an absorbing medium, while ω̃ represents the saddle point of
the eikonal ωt − k(ω)x in the complex plane ω.
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Asymptotically both quantities ω̃ and k̃ depend only on the ratio
x/t = W, where W is the classical group velocity (5) calculated at
k = k̃. The asymptotic group velocity W is always real and it rep-
resents the velocity of propagation of constant complex values of the
local frequency ω̃ and the local wave number k̃. Since in an absorb-
ing medium the local frequency ω̃ at the center of a WP changes in
time, the envelope’s peak propagates with a variable velocity V (t).
The results of [11] related to asymptotic stage of WP propagation in
absorbing media are quite general and, therefore, the real group veloc-
ity should appear at long times in solutions of the TE.

Thus, we may expect that for causal WP solutions of TE, the en-
velope’s peak velocity V will be close to the quantity W > c during
some finite time interval and that the subluminal real group velocity
W = x/t < c will be revealed for WP solutions of TE at long traveling
distances.

The paper is organized as follows: In Sec. 3 the classical group
velocity W (k) = ∂ω/∂k is calculated for elementary wave solutions of
TE. It is shown that the group velocity is real for real wave numbers k
if the absolute value of k exceeds some threshold value and in that case
W > c. The quantity W is real also for purely imaginary values of k
and in this case W < c. In addition, the group velocity Wc defined in
(5) is calculated for real carrier frequency ω = ωc. The quantity Wc is
complex and its real part Uc is much larger than the imaginary part of
Wc in the range of frequencies ω > 1/λ. It is shown that in this range
Uc > c and Uc tends to c when ω tends to infinity. The solution
u(x, t) of TE in a half-space x > 0 satisfying zero initial conditions
and a causal boundary condition u(0, t) = F (t) with F = 0 for t ≤ 0
is presented in the form of the Fourier integral and its asymptotic
representation is obtained by the saddle-point method. It is shown
that for long times (t − x/c � λ) and large distances (x � cλ),
the saddle-point frequency ω̃ is purely imaginary and the solution
becomes aperiodic in time even if the boundary signal F (t) contains
oscillations. In this limit the quantity ω̃ depends on the ratio x/t
and represents the logarithmic slope of the SP solution as a function
of time. A given constant value of ω̃ propagates with the real group
velocity W = x/t < c. Analysis of the asymptotic behavior of the
Green function for TE shows that in any fixed spatial domain behind
the leading edge x = ct the solution of TE approaches at t � λ the
solution of the diffusion equation that can be obtained by discarding
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the second time derivative of (1).
In Sec. 4 we analyze the propagation of WPs filled with high-

frequency oscillations at relatively short distances satisfying the con-
dition x � cλ2/∆, where ∆ is the characteristic semiwidth of the
boundary signal envelope, which is assumed to be less than the damp-
ing time λ. It is shown that for such short distances the carrier fre-
quency ω remains practically constant and the maximum of the en-
velope propagates with the group velocity that is larger than c. Since
this happens only at the initial stage of WP propagation, there is no
violation of special relativity: The envelope’s maximum appears at
the spatial point x only after the instant x/c when the light precur-
sor reaches this point and, hence, the maximum never overtakes the
leading edge of the signal.

Section 5 contains the analysis of propagation of SPs, at distances
x which are much smaller than the absorption length La = 2cλ. It is
assumed that the characteristic lifetime of a pulse given at the bound-
ary x = 0 is much shorter than the damping time λ. It is shown
that the maximum of a SP propagates with the velocity V, which is
smaller than c, and V tends to c when the lifetime of a boundary
signal tends to zero. In the analysis of both problems considered in
Sects. 4 and 5, the integral representation of the solution of the TE
based on the explicit form of the Green function has been employed.

In Section 6 is shown how the results related to short distance prop-
agation can be transferred to the case of the generalized telegrapher’s
equation (henceforth GTE), which is obtained by the addition of a
dispersive term ω2

0u to the left-hand side of (1).
Section 7 presents the results of numerical calculations of high-

frequency signals and SPs. Both kinds of signals are computed directly
from the integral representation of the solution of the TE given in [12].
The calculations of high-frequency signals demonstrate the superlumi-
nal propagation of a temporal envelope maximum (V > c) at short
distances x � La with the transition to the subluminal mode of prop-
agation for longer distances. The numerical calculations are performed
also for relatively large distances (of order of La) that are beyond the
validity of the asymptotic method of Sec. 4.

Numerical calculations of SPs presented in Sec. 7 demonstrate the
subluminal propagation of their temporal maxima (V < c). In addi-
tion, it is shown that at the distance x which is close to five absorption
lengths, a new temporal maximum is created and this results in a sig-
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nificant reshaping of the pulse. For larger distances the new maximum
dominates and propagates with V < c, while the magnitude of the
solution at the initial maximum decreases and the latter totally disap-
pears at x > 10 La.

The discussion of main results is given in Sec. 8.

3. GROUP VELOCITY, LONG-TIME ASYMPTOTICS,
AND THE GREEN FUNCTION

The elementary exponential solutions of (1) have the form

u = C exp[i(kx − ω(k)t)] (7)

where the dispersion relation ω(k) is given by

ω(k) = − i

2λ
±

√

c2k2 − 1
4λ2

(8)

The upper and lower signs in (8) correspond to the branches of the
function ω(k) that are responsible for the wave propagation in the
positive and negative x-directions, respectively. Calculating the group
velocity from (8) results in

∂ω

∂k
= ±W (k) , W (k) =

c
√

1 − 1/(4c2k2λ2)
(9)

As mentioned above and seen from (9) there are two domains of pos-
sible values of k2 where the group velocity is real:

k2 > k2
c = (4λ2c2)−1 , W > c (10)

and
k2 < 0 , 0 < W < c (11)

Thus, the real group velocity W appears either for sufficiently short
oscillatory waves satisfying condition (10) and then it exceeds the vac-
uum speed of light, or for the waves that satisfy condition (11) and,
therefore, decay aperiodically both in space and in time. For the lat-
ter the group velocity is less than c. Deferring the discussion of the
condition (10) and its role in the propagation of real signals to subse-
quent sections of the present paper, we show below that the case (11)
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is revealed at the asymptotic stage of the solution describing a SP for
long times t.

Calculating the group velocity W for a given real frequency ω = ωc

in the accordance with the definition (5) results in a complex function
Wc(ω) of a real variable ω,

Wc(ω) = Uc(ω) + iVc(ω) (12)

whose real and imaginary parts are presented as

Uc = c

√
2(ζ + 1)3/2

ζ2 + 3
, Vc = −c

√
2(ζ − 1)3/2

ζ2 + 3
, ζ =

√

1 +
1

λ2ω2
(13)

Analysis of formulas (13) shows that Uc reaches its maximal value
maxUc = 1.066c at λω = λωm = (16 − 4

√
13)−1/2 = 0.796 and for

ω > ωm the quantity Uc remains larger than speed of light c and
tends to c at ω → ∞. Functions Uc(λω) and Vc(λω) are shown in
Figs. 1 and 2. Although Uc is different from the quantity U defined in
(6), both functions behave similarly. The maximal value of U equals
1.089c and it is reached at λω = 0.577.

Let us consider the evolution of the TE for a signal excited at the
boundary x = 0 of the half-space x > 0. The mathematical problem
is formulated as follows: To find the solution u(x, t) of (1) in the
domain 0 < x < ∞, t > 0 satisfying conditions:

u(x, 0) = 0 , (∂u/∂t)t=0 = 0 ; u(0, t) = F (t) , F (0) = 0 (14)

The first two conditions (14) are satisfied automatically for causal
boundary signals F (t) with F = 0 for t < 0. The function F (t)
may represent a train of oscillations within some envelope or a solitary
pulse. It is assumed that F (t) tends to zero when t tends to infin-
ity. The solution u(x, t) can be presented in the form of the Fourier
integral

u(x, t) =

∞∫

−∞

B(ω) exp[iΣ(ω, x, t)]dω (15)

where B(ω) is the Fourier transform of the boundary signal

B(ω) =
1
2π

∞∫

−0

F (t) exp(iωt)dt (16)
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Figure 1. The real part Uc of the group velocity normalized to the
speed of light c as function of the parameter λω for real frequencies
ω.

Figure 2. The imaginary part Vc of the group velocity normalized to
the speed of light c as function of the parameter λω for real frequen-
cies ω.
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and Σ is the eikonal given by

Σ(ω, x, t) = k(ω)x − ωt , k(ω) = c−1
√

ω(ω + i/λ) (17)

The solution u(x, t) is nonzero only in the domain 0 < x < ct. The
fact that u = 0 for x > ct stems from hyperbolicity of (1). This
can be shown also directly from the integral representation (15) by
introducing finite limits of integration −Ω < ω < Ω, applying the
Jordan lemma and transition to the limit Ω → ∞.

We assume that the boundary signal F (t) decays at t → ∞. There-
fore, its spectrum B(ω) does not have singular points on the real axis
such as simple poles that appear in the Sommerfeld-Brillouin problem
[1, 2]. Then employing the saddle-point method for calculating the in-
tegral given by (15) for large values of t and x < ct (see Ref. [11] for
details) allows us to determine the saddle point ω = ω̃ in the complex
plane ω as

Re

(
∂k

∂ω

)

ω=ω̃

=
t

x
, Im

(
∂k

∂ω

)

ω=ω̃

= 0 (18)

The second of Eqs. (18) indicates that for the saddle-point frequency
ω = ω̃ the group velocity W is real and equals x/t. Since x < ct,
the inequality W < c holds, i.e., the condition (11) is satisfied. From
Eqs. (8), (9) and (18) we can find the values of ω̃ and k̃ = k(ω̃)

ω̃ =
i

2λ

(
1

√
1 − W 2/c2

− 1

)

, k̃ =
iW/c

2λc
√

1 − W 2/c2
, W =

x

t

(19)
If the function B(ω) does not have singular points with Imω ≥ 0,
the asymptotic expression for the Fourier integral (15) obtained by the
saddle-point method is as follows:

u(x, t) ≈ G̃(x, t)B(ω̃(x, t)) , G̃(x, t) =
exp

[
iΣ(ω̃(x, t), x, t) +

iπ

4

]

√
2πx(∂2k/∂ω2)ω=ω̃

(20)
Formula (20) is valid for t − x/c � λ and x � cλ. Here G̃(x, t) is
the asymptotic expression for the Green function G(x, t). The latter
is defined as the solution of the initial-boundary value problem (14)
with F (t) = δ(t), where δ(t) is the Dirac delta-function. Therefore,
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G(x, t) is given by the Fourier integral (15) with B = 1/2π. Since in
the limit t → ∞ the saddle-point frequency ω̃ tends to zero, B(ω̃)
tends to a constant value B(0) which can be easily calculated from
(16). As is seen from (20), for sufficiently long times and B(0) 	= 0
the detailed structure of the boundary signal F (t) does not influence
the asymptotic behavior of the solution u(x, t), which will be totally
determined by the Green function and by the integral of F (t) over the
whole time interval 0 < t < ∞. For the TE (1) the Green function
is well known and the solution of the initial-boundary value problem
(14) can be found as a convolution of F and G :

u(x, t) =

t∫

x/c

F (t − τ)G(x, τ)dτ (21)

For the TE (1), the specific form of (21) can be found in Doetsch’s
monograph ([12], formula 25.23). Recasting the Doetsch formula in
our nomenclature results in

u(x, t) = e−x/2λcF (t − x/c)

+
x

2λc

t∫

x/c

e−τ/2λ
I1

[
(2λ)−1

√
τ2 − x2/c2

]

√
τ2 − x2/c2

F (t − τ)dτ (22)

where I1(z) is the modified Bessel function of the first order. Since
for F (t) = δ(t) the solution (22) turns into the Green function, the
latter is presented as

G(x, t) = 0, (t < x/c);
G(x, t) = G1(x, t) + G2(x, t), (t > x/c)

G1 = δ(t − x/c)e−x/2λc,

G2 =
x

2λc
e−t/2λ

I1

[
(2λ)−1

√
(t2 − x2/c2)

]

√
t2 − x2/c2

(23)

The first term G1 on the right-hand side of (23) represents an expo-
nentially decaying singular signal propagating with the speed of light.
The second term G2 is a regular part of the Green function that is re-
sponsible for the phenomenon which is known in mathematical physics
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as wave diffusion [14]: If the boundary signal has a finite lifetime, i.e.,
F (t) = 0 for t < 0 and for t > T, the signal at the point x becomes
nonzero at t = x/c but it does not vanish again at t = x/c + T.
Instead, a residual perturbation persists at the point x for all times
t > x/c and decays as t → ∞ (see also [9]). At the leading edge of
the signal (x = ct) the function G2 is given by

G2(x = ct, t) =
te−t/2λ

8λ2
(24)

For large times (t − x/c � λ) and long distances (x � cλ) the
argument of the function I1 is large and we may replace I1 by its
asymptotic expansion

I1(z) ≈ ez/
√

2πz , (z � 1) (25)

Then we obtain the asymptotic form of the function G2

G2(x, t) ≈
x exp

([√
t2 − x2/c2 − t

]
/2λ

)

c
√

4πλ(t2 − x2/c2)3/4
, [t − x/c � λ, x � cλ]

(26)
The same asymptotic formula is obtained from the saddle-point repre-
sentation of the Green function G̃(x, t) given by the second equation
in (20), in which ω̃ is taken from the first equation in (19). For t � λ
the exponential term in (26) represents a fast varying function which is
equal to exp(iΣ̃), where Σ̃ is the value of the eikonal Σ = k(ω)x−ωt
calculated at the saddle point ω = ω̃(x, t). Both quantities ω̃ and
k̃ = k(ω̃) are purely imaginary, therefore, iΣ̃ is real and consequently
the signal (23) displays an aperiodic behavior. This is quite different
from a regular WP comprising a large number of oscillations. As is
seen from (26), for large distances and for a fixed ratio x/t = W < c
the Green function can be presented as G2 = a(W )t−1/2 exp[−b(W )t]
with b = i(ω̃ − k̃W ) > 0.

Therefore, the velocity of propagation of a given damping rate b
equals W = x/t < c and this is the real group velocity ∂ω/∂k cal-
culated for the imaginary wave number k̃. For a fixed value of x the
pulse’s slope and the velocity of its propagation tend to zero when
t → ∞. In the limit W 2/c2 � 1 (26) takes the form

G2 ≈ xe−x2/4νt

2
√

πνt3/2
, ν = c2λ , (x/ct)2 � 1 (27)
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It can be easily shown that the function on the right-hand side of (27)
represents the Green function of the initial boundary value problem
for the diffusion equation

∂u

∂t
= ν

∂2u

∂x2
(28)

This result is quite natural: For long times the solution u = G2 of (1)
satisfies the condition

∣
∣λ(∂2u/∂t2)/(∂u/∂t)

∣
∣ = O

[
λt/(t2 − x2/c2)

]
� 1 (29)

which indicates that for t − x/c � λ the first term on the left-hand
side of (1) can be neglected. Therefore, in this limit the asymptotic
behavior of the solution u(x, t) of the TE can be described by (28). For
a given x the temporal maximum of a SP described by the diffusion
Green function (27) appears at t = tm(x) = x2/6ν and its propagation
velocity Vm = [dtm(x)/dx]−1 decreases as 1/

√
x.

4. SHORT-DISTANCE BEHAVIOR OF HIGH-
FREQUENCY SIGNALS

We consider here the propagation of WPs comprising a large number
of oscillations, whose period is very small, compared to the envelope
width ∆ and the damping time λ. Such signals are solutions of the
initial-boundary value problem (14) with

F (t) = H(t) sinωt (30)

where ω is the appropriate carrier frequency. We assume that the
function H(t) represents a temporal peak with the characteristic width
∆ � 2π/ω and that H(t) vanishes at t = 0 and t → ∞ Inserting
(30) into (22) and performing two consecutive integrations by parts of
the integral term of (22), we obtain the approximate solution as

u(x, t) = e−x/2λc

[(
H(η)[1 + O(ε)] +

ε

2ω

dH

dη

)
sinωη

− ε [1 + O(ε)]H(η) cos ωη

]
,

η = t − x

c
, ε = ε(x) =

x

4cλ2ω
� 1 (31)
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This solution describes a WP that can be presented as

u = A(η, x) sin[ωη + ψ(η, x)] (32)

where A is a slowly varying amplitude and ψ is a phase shift which is
inconsequential for the subsequent analysis. The function A(η, x) has
the form

A(η, x) = e−x/2λc

[
H(η)[1 + O(ε(x))] +

ε(x)
2ω

dH(η)
dη

]
(33)

From (33) it follows that at x = 0 the amplitude function A becomes
the envelope of the boundary signal, i.e., A(η, 0) = H(t). For a fixed
value of the coordinate x, the maximum of the envelope A(η, x) in
time is achieved at η = η̃ = t̃ − x/c where η̃ is determined by

[∂A(η, x)/∂η]η=η̃(x) = 0 (34)

If the function H(t) has a single maximum at t = tm > 0 then
for ε(x) � 1 the solution of (34) can be found by the perturbation
method:

η̃ = tm + εη1 + O(ε2) (35)

and, therefore,

(
∂A

∂η

)

η=η̃

= e−x/2λc

[(
d2H

dt2

)

t=tm

(
η1 +

1
2ω

)
ε + O

(
H(t)
∆

ε2

)]

(36)

Inserting (36) into (34) results in η1 = −1/2ω. Then (35) allows us to
determine the instant t̃(x), for which the temporal envelope reaches
its maximal value

t̃(x) = tm +
x

c

[
1 − 1

8λ2ω2

(
1 + O

(
∆x

cλ2

))]
(37)

From (37), the velocity of this temporal maximum is given by

Ṽ =
dx

dt̃
≈ c

1 − 1/(8λ2ω2)
≈ c

[
1 + 1/

(
8λ2ω2

)]
> c,

(
x � cλ2/∆ , 8λ2ω2 � 1

)
(38)
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The WP solution presented by Eqs. (32) and (33) is valid for limited
distances satisfying the condition x � cλ2/∆. For such distances the
dispersive effect is weak and it does not change the local wave number
k = ω/c at the envelope maximum. Since in the case under consider-
ation the wave number satisfies the condition

k2 = ω2/c2 � k2
c = 1/(4λ2c2) (39)

the group velocity W is real and it is given by the second of Eqs. (9).
Expanding W (k) in series in a small parameter k2

c/k2 results in

W (k) =
c

√
1 − k2

c/k2
= c

[
1 + 1/

(
8λ2ω2

)
+ O[1/(λ4ω4)]

]
(40)

Comparing Eqs. (38), (40), we can see that for a high-frequency sig-
nal satisfying condition (39), the envelope’s peak propagates with the
group velocity W (ω/c). The latter exceeds the front velocity c. The
same result can be obtained if we calculate the real part Uc of the
group velocity for a real frequency from the first of Eqs. (13). An
expansion of the difference Uc − c in series in a small parameter
α = 1/λ2ω2 results in a leading term c/(8λ2ω2), which has the same
form as those given by Eqs. (38) and (40). Therefore, with the ac-
curacy of the first order in α all three velocities dx/dt̃, W and Uc

coincide.
Since the solution of the initial-boundary value problem (14) differs

from zero only for t > x/c, the instant t̃(x) never becomes less than
the value x/c, i.e., the envelope’s maximum may propagate over some
finite distance with the velocity W > c but it never overtakes the
leading edge of the signal propagating with the velocity c. Actually
(37) which determines the instant t̃(x) can be used until the difference
t̃ − tm remains much less than λ2/∆. For long times the envelope’s
maximum decelerates, its velocity becomes less than c and tends to
zero as t → ∞. At this stage the diffusion effects dominate and lead
to the lowering of both the amplitude and the local frequency.

5. SHORT-DISTANCE BEHAVIOR OF SOLITARY
PULSES

In the present section we analyze an initial stage of propagation of SPs,
for which the boundary function F (t) has the form

F (t) = C exp[ϕ(t)] ; ϕ(0) = −∞ ; ϕ(∞) = −∞ ; C = const > 0
(41)
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It is assumed that the function ϕ(t) has a single maximum at t = t∗,
i.e.,

ϕ′(t∗) = 0 , ϕ′′(t∗) < 0 (42)

Consequently the function F (t) vanishes at t = 0 and t = ∞ and it
describes a pulse with a single maximum at t = t∗. In addition, we
shall assume that the characteristic semi-width T of a pulse presented
by (41) is much less than the damping time, i.e.,

T =
√

2/|ϕ′′(t∗)| � λ (43)

For short times and distances satisfying condition

x/c ≤ t � λ (44)

the argument z of the modified Bessel function is small and I1(z) can
be replaced by

I1(z) ≈ z

2

(
1 +

z2

8

)
(45)

The solution given by (22) can now be recast in an approximate form

u(x, t) ≈ C




eϕ(η)q(x) +

x

8λ2c

t∫

x/c

p(x, τ)eϕ(t−τ)dτ




 ,

η = t − x/c, q(x) = (1 − x/2λc),
p(x, τ) = (1 − τ/2λ)

[
1 +

(
τ2 − x2/c2

)
/32λ2

]
(46)

Equation (46) describes the behavior of SPs at relatively small dis-
tances from the boundary x = 0, when both conditions (43), (44) are
satisfied. The instant t̄(x) when the local maximum of the solution ap-
pears at the point x is determined from the condition (∂u/∂t)t=t̄ = 0,
which results in

eϕ(η̄)ϕ′(η̄)q(x)+
x

8λ2c




p(x, t̄)eϕ(0) +

t̄∫

x/c

p(x, τ)eϕ(̄t−τ)ϕ′(̄t − τ)dτ




 = 0

(47)
where η̄ = t̄ − x/c. The first term within the rectangular brackets
vanishes since exp(ϕ(0)) = F (0) = 0. For sufficiently small values of
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t̄/λ and, therefore, for small x/λc, we can replace in (47) each of the
functions q(x) and p(x, t̄) by unity and retain only the factor linear
in x before the rectangular brackets. Then the integral term in (47)
can be calculated as

t∫

x/c

eϕ(̄t−τ)ϕ′(̄t − τ)dτ = eϕ(η̄) (48)

Thus, for sufficiently small values of x we obtain an asymptotic equa-
tion for the quantity η̄ = η̄(x)

ϕ′(η̄) + x/(8λ2c) = 0 (49)

The solution of (49) at x = 0 is η̄(0) = t∗. Therefore, for small
distances x we can present η̄(x) as

η̄(x) = t∗ + νx + O(x2) (50)

This relation is similar to (35) that was obtained for the envelope’s
maximum. Inserting (50) into (49) results in

ν = −
[
8λ2cϕ′′(t∗)

]−1 = T 2/
(
16λ2c

)
(51)

Therefore, an initial part of the trajectory of the solitary pulse maxi-
mum is approximated by a straight line in (x, t) plane

t = t̄(x) = t∗ + x/c + T 2x/(16λ2c) (52)

The maximum starts to propagate from the boundary with the velocity
V that is determined by

V =
dx

dt̄
=

c

1 + T 2/(16λ2)
< c (53)

This formula is valid if

x � cλ, t∗ � λ, T 2/(16λ2) � 1 (54)

Formula (53) can be used for relatively small values of x and it gives
an exact value of the temporal maximum velocity at the boundary
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x = 0. The comparison of (54) with (38) shows that unlike the WP
envelope maximum that starts to propagate from the boundary with a
superluminal velocity W, the SP maximum starts with a subluminal
velocity V. The second distinction lies in the fact that W equals the
group velocity [see (40)], while the velocity of the SP maximum V
is not related to the group velocity at all. It should be noted that
small relative deviations of both velocities W and V from the speed
of light c are linear in T 2/λ2, where T is the minimal characteristic
time of the boundary signal, i.e., T represents either the period of
high-frequency oscillations or the characteristic semi-width of SP.

6. EXTENSION OF ANALYTICAL RESULTS TO
GENERAL TE

The results presented in Sections 4 and 5 can be extended to the case
of general telegrapher’s equation (henceforth GTE)

∂2u

∂t2
+

1
λ

∂u

∂t
= c2 ∂2u

∂x2
− ω2

0u (55)

In comparison with TE given by (1), GTE contains the additional term
−ω2

0u. For a coaxial cable line this term appears when a finite shunt
conductance per unit length Q is taken into account. For Q > 0 the
parameters 1/λ and ω2

0 are given by [see Stratton [9], (27), p.550]

1
λ

= c2(RC + LQ) , ω2
0 = c2RQ (56)

Using a well-known inequality

RC + LQ ≥ 2
√

RCLQ = 2
√

RQ/c (57)

results in
1/(4λ2) ≥ ω2

0 (58)

It will be shown that condition (58) affects the qualitative behavior
of WPs and solitary pulses in cable lines. According to Doetsch [12],
the solution of the boundary-value problem for GTE is obtained from
the solution of TE given by (22) when in the latter the second term is
replaced by

x

2λ̃c

t∫

x/c

e−τ/2λ
I1

[
(2λ̃)−1

√
τ2 − x2/c2

]

√
τ2 − x2/c2

F (t − τ)dτ (59)
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where 1/λ̃ is defined as

1
λ̃

=

√
1
λ2

− 4ω2
0 (60)

Therefore, in obtaining the analog of Eq. (35) for the velocity of the
maximum of the wave packet envelope we just replace λ by λ̃ in the
definition of ε(x) given in Eq. (31). This leads to a modified formula
(38), in which λ is replaced by λ̃. Since 1/λ̃ is less than 1/λ, tak-
ing account of a finite shunt conductance Q reduces the difference
between the front velocity c and the velocity of the envelope’s max-
imum. However, the latter remains larger than c for short distances
x due to condition (58). The transition to GTE does not alter also
the fact that for high-frequency oscillations the envelope’s peak prop-
agates at short distances with the real group velocity W (k) > c. We
only should remember that now in Eqs. (39) and (40) λ is replaced
by λ̃.

For a SP, the velocity of its temporal maximum V at small distances
from the boundary (x � cλ̃) is determined by Eq. (53), in which λ
is replaced by λ̃. Thus, the near-boundary value of V remains less
than c and it is closer to c in comparison with the case of zero shunt
conductance.

7. NUMERICAL RESULTS

The solution u(x, t) of the initial-boundary value problem (14) for
Eq. (1) was calculated numerically for high-frequency boundary signals
having the form

F = F0
t

∆
exp(−t/∆) sin(ωt) , F0 = const (61)

and for boundary signals representing SPs

F = F0
t

θ
exp(−t/θ) , F0 = const (62)

Both solutions were calculated directly from the exact integral repre-
sentation (22). The dimensionless variables ξ = x/λc and τ = t/λ
were used. The software package Mathcad (version 7) was used to
calculate numerically the Doetsch solution (22). The software used
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the adaptive Romberg method for integration [17] where the integra-
tion step is a parameter depending on the convergence of the results
(integration error). The convergence parameter between every two
integration steps x = xn−1 and x = xn defined as |{J(xn/c, t) −
J(xn−1/c, t)}/F0|, where J(x/c, t) is the integral term in formula (22),
was chosen to be 10−12. When calculating the approximate solution
for small values of t − x/c, i.e., in the region where the argument of
the modified Bessel function I1 is very small, the approximate ana-
lytical formulas of Section 4 could be used. When the argument of
I1 could not be considered small, the interval of integration [x/c, t]
was divided into two sub-intervals, D1 ≡ [x/c,

√
x2/c2 + 100λ2] and

D2 ≡ [
√

x2/c2 + 100λ2, t]. Within the second sub-interval the asymp-
totic expansion of the modified Bessel function I1(z) for large value
of its argument z [15] was employed. In order to verify that Bessel
function values were correct prior to the numerical integration in the
sub-interval D1, they were compared to the values obtained by MAT-
LAB (version 5.1). The calculated values were found to be compatible.
It has to be taken into consideration that the software Mathcad uses
the Taylor expansion to describe the modified Bessel function I1(z),
and therefore, an accuracy problem might arise if an insufficient num-
ber of terms is used. Various lengths of the Taylor expansion were tried
until 40 terms were chosen to describe I1(z) for z < 5. For z > 5 only
asymptotic expansion of I1(z) was employed for numerical integration
in the sub-interval D2.

When calculating the maximum value of the solution u(ξ, τ), where
ξ = x/cλ, τ = t/λ, 106 samples around the temporal maximum loca-
tion were used. After finding the location of the temporal maximum τ1

for a given ξ1, the solution was computed for ξ1 + ∆ξ, and when the
location of the next temporal maximum τ2 was found, then the veloc-
ity of the temporal maximum was computed according to ∆ξ/(τ2−τ1).
This procedure was used in all calculations. In order to eliminate er-
rors due to numerical noises, the interval ∆ξ was changed until results
obtained were robust, i.e., not dependent on ∆ξ. Typical values of ∆ξ
were 10−3 to 10−5 and this was the reason for choosing 106 samples.
When the WP propagation solution was calculated, some convergence
problems arose for large arguments. This fact prevented the drawing
of a full picture of the behavior of the maximum velocity, especially
for large times. In the same way, calculations for the SP propagation
were halted after ξ = 18, since we were confident with the results up
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to this point.
All results in this paper were checked by using an adaptive recursive

Newton-Cotes eight panels rule integration method [17]. The numerical
results obtained by the Newton-Cotes method and by the Romberg
approach were found to be close.

The calculations of WP corresponding to the boundary signal (61)
were performed for λ/∆ = 0.3 and λω = 9.6. The boundary signal
is shown in Fig. 3. The velocity Vm/c of the absolute temporal max-
imum of the solution computed as a function of ξ is shown in Fig.
4. It is seen that near the boundary the maximum propagates with
the superluminal velocity (Vm/c > 1). The values of Vm/c become
subluminal at distances x larger than 0.03La where La = 2λc is
the characteristic absorption length. The calculations were halted at
x = La where the amplitude of the signal was significantly reduced.

Numerical calculations of SPs (62) performed for λ/θ = 4.5 dis-
play that the temporal peak of the pulse begins to propagate from the
boundary x = 0 with the velocity V/c < 1 in agreement with the an-
alytical relation (53). Both the magnitude of the maximum and its ve-
locity decrease with the distance x, while the trailing part of the pulse
becomes progressively flatter (Figs. 5–8). At some critical distance
x = xc, which is close to five absorption lengths (ξc = xc/λc ≈ 10),
the pulse profile representing the solution u as a function of time ac-
quires an inflection point with a horizontal tangent. For x > xc, a
new maximum and minimum appear, so that the dependence of u of
t has two maxima and one intermediate minimum. The magnitude
of the first maximum decreases with time, while the magnitude of the
second one increases and this new maximum becomes dominant. This
intricate pulse form is observed until the first maximum and minimum
approach one another and then disappear, as is seen in Fig. 8. This
occurs at the distance x∗ which is close to eight absorption lengths.
For x > x∗ only one extremum of u (a maximum) exists. At large
distances this maximum can be described by the Green function of
the diffusion equation presented in (27). Its magnitude and velocity
decrease with x, while the pulse width increases and becomes much
larger than the width of the boundary pulse. At this long-distance
stage of propagation“the memory”, i.e., the relation to the boundary
signal features is totally lost.
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Figure 3. The WP u(x = 0, t) given at the boundary of a half-space
[formula (61)] versus the normalized time τ = t/λ for λ/∆ = 0.3 and
λω = 9.6 .
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Figure 4. The normalized velocity Vm/c of the temporal maximum
versus the normalized distance from the boundary ξ = x/λc for the
solution u(ξ, τ) corresponding to the boundary signal presented in Fig.
3. The dots represent the locations where the velocity was computed.
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Figure 5. The SP u(x = 0, t) given at the boundary of a half-space
[formula (62)] versus the normalized time τ = t/λ for λ/θ = 4.5 .

8. DISCUSSION AND CONCLUSIONS

The objective of the present article is two-fold: to investigate thor-
oughly the spatial and temporal evolution of WPs and SPs propagat-
ing in a half-space and described by TE, and to demonstrate that the
real group velocity appears as an important feature of solutions for
large and small distances from the boundary.

As is shown in Section 3, the group velocity W = ∂ω/∂k calculated
for exponential solutions of the TE having the form exp[i(kx−ωt)] is
real in two cases: (a) when k is purely imaginary and, (b) when k is
real and |k| > 1/La. Although WPs and single pulses are not elemen-
tary waves with constant values of k and ω, the dispersive proper-
ties of elementary waves are revealed when applying the saddle-point
method to asymptotic solutions which can be characterized by the local
wave number k(x, t) and the local frequency ω(x, t). Thus, at large
distances and long times when the asymptotic behavior of solutions
is described by the Green function, slowly varying local characteris-
tics ω(x, t) = ω̃(x/t) and k = k(ω̃) = k̃(x/t) can be introduced. The
quantity ω̃ appears as a saddle point of the eikonal Σ = k(ω)x−ωt in
the complex plane ω. Both quantities ω̃ and k̃ are purely imaginary
and they can be associated with a local “group” of purely exponen-
tial waves in some vicinity of arbitrary point (x, t). Similar situation
was considered in [16] for aperiodic solutions of the diffusion equation.
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Figure 6. The SP u(ξ, τ) versus the time-dependent variable τ − ξ =
(t − x/c)/λ for ξ = x/λc = 5.5 and λ/θ = 4.5 .

0 3.75 7.5 11.25 15 18.75 22.5 26.25 30
0

0.0014

0.0027

0.0041

0.0055

u (ξ

ξ

=11.1,τ

τ

)

−

Figure 7. The SP u(ξ, τ) versus the time-dependent variable τ − ξ =
(t − x/c)/λ for ξ = x/λc = 11.1 and λ/θ = 4.5 .
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Figure 8. The SP u(ξ, τ) versus the time-dependent variable τ − ξ =
(t − x/c)/λ for ξ = x/λc = 17.7 and λ/θ = 4.5 .

Here the group velocity W = x/t < c is not a velocity of propagation
of a given real local frequency, as in the case of WPs in non-absorbing
media [18], but is the velocity of propagation of a given local damping
rate. This interpretation is in the agreement with the concept of real
local group velocity for absorbing media developed in [11].

This chapter shows that the existence of the range of real wave num-
bers |k| > 1/La in which the group velocity is superluminal (W > c)
cannot be ignored when studying causal solutions of the TE, and the
superluminal group velocity, in the context in which it was presently
introduced, should not be regarded as unphysical. When the group
velocity in an absorbing medium W (k) becomes real, it only has a
kinematic meaning as a velocity of the interferential maximum for a
WP concentrated near the central wave number k. For physical sys-
tems with combined wave damping and dispersion, governed by partial
differential equations of hyperbolic type such as the TE or the GTE,
the temporal envelope’s maximum of a causal signal may propagate
with the local group velocity W > c for relatively short distances from
the boundary. A proof of this statement is given in Sec. 4.

At a given point x the temporal envelope’s maximum always ap-
pears after the instant t = x/c. Thus, there is no violation of relativity
or causality: The information on switching on of the boundary signal
propagates exactly with the speed of light c. As to the envelope’s max-
ima that can be registered at two different points x1 and x2 > x1,
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they appear after the instants x1/c and x2/c, respectively. Since
the wave absorption leads to continuous reshaping of the envelope,
the maximum which appears at x = x2 is not a direct consequence
of the maximum formed at x = x1. Thus, the causality requirement
does not impose any restriction on the velocity Ṽ of the envelope’s
maximum. Since the envelope’s maximum never overtakes the leading
edge x = ct of a causal signal, the instantaneous maximum velocity
may be superluminal only at some finite distance from the boundary.
For large distances Ṽ becomes less than c. The deceleration of a su-
perluminal motion with the transition through the speed of light was
obtained in numerical calculations (see Fig. 3). In these calculations
the near-boundary values of Ṽ exceed the speed of light only by one
percent due to the large value of the parameter ωλ. The quantity Ṽ
increases when the parameter ωλ is reduced. However, the reduction
of this parameter increases the damping rate to the frequency ratio at
x > 0. As a result, the oscillations survive only within a very narrow
boundary layer. To explain this behavior we can consider Eqs. (8) and
(9) for real k2 > k2

c . Then we obtain

|Imω/Reω| =
√

W 2/c2 − 1 (63)

Thus, formula (63) shows that for W/c > 1.1 the ratio |Imω/Reω| is
larger than 0.46. Since in this case the damping time 1/|Imω| becomes
at least three times less than the period of oscillations 2π/|Reω|, the
concept of a slow varying envelope fails. Similar results are obtained
when considering the behavior of the real part Uc(ω) of the group
velocity calculated for real ω [see the first equation in (13) and Fig.1].
The maximal value of the ratio Uc/c equals 1.066 and it is reached at
ωλ = 0.796. However, for this value of ωλ the wave length 2π/kr is
more than three times larger than the damping length 1/ki and we
can see again that the concept of slowly varying envelope of oscillations
(now in space) fails. Thus, the velocity of an interferential maximum
presented by any of the quantities W (ω/c) or Uc(ω) may exceed the
speed of light only slightly and this happens only in the domain where
the short-wave or high-frequency WPs are well defined, i.e., when the
WP’s envelope is varying slow. This is confirmed also by the analysis
of the solution for a half-space performed in Section 4. The reduction
of the parameter ωλ without changes of the effective number of oscil-
lations at x = 0, i.e., when keeping ω∆ = const, decreases the ratio
λ/∆. This leads to the lowering of the relative size x/La of the nearby
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Figure 9. The velocity V of the SP maximum normalized to speed
of light c versus the normalized distance from boundary ξ = x/λc for
the solution u(ξ, τ) corresponding to the boundary signal presented
in Fig. 5. The dots represent the locations where the velocity was
computed.

boundary domain in which the condition Ṽ > c can be guaranteed [see
the second inequality in formulas (38)].

The behavior of aperiodic SPs whose characteristic width at the
boundary is less than the damping time (T � λ) is interesting. At
short distances which are less than the absorption length (x � La),
the pulse maximum propagates with the velocity V that is close to
but less than c (Fig. 9). The difference c − V increases with the in-
crease of the ratio T/λ. Since for very large distances (x � La) and
long times (t − x/c � λ) the solution should evolve to a diffusion-
type pulse described by the Green function (27), one might think at
a first glance, that the solitary boundary pulse would be extended in
time and decrease its magnitude to approach the diffusion-like form
without any peculiarities. Instead, however, a strong reshaping of the
pulse occurs within several absorption lengths, as is seen from Figs. 5–
7. The transition from the wave-like mode to the diffusion-like mode of
propagation is associated with the formation of a new temporal maxi-
mum, while the first maximum totally disappears at sufficiently large
distances. Such a behavior is a consequence of competition between
two terms representing the exact solution of TE given by (22). Each
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of these terms has a temporal maximum, while the maximum of the
first, local, term appears first and dominates at short distances where
the magnitude of the second, integral, term is small. For large dis-
tances the first term is suppressed by absorption and the integral term
becomes dominant.
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