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1. INTRODUCTION

The global advantages of microwave processing of material samples
over conventional heating have been systematically demonstrated, in-
cluding fast chemical reaction rate, fast heating rate, and high selec-
tivity. However, the physical mechanism leading to these advantages
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for the microwave heating is not well known. To understand this, the
interaction of microwave fields and the material samples needs to be
investigated. The first task is to study the coupling of the microwave
energy into molecules of a material sample. For this study, it is nec-
essary to determine the microwave (EM) energy absorption rate (or
dissipated microwave power density) P at any point inside the mate-
rial sample. To determine P , it is essential to quantify accurately the
distribution of the induced electric field at any point inside the mate-
rial sample. Therefore, the key step to understand the processing of a
material sample in an energized electromagnetic cavity is to quantify
the induced electric field inside the material sample.

The subject of dielectric-loaded cavities has been studied by a num-
ber of workers [1–6] based on the mode-matching method or the surface
integral equation method. However, all these studies considered only
the cavities loaded with dielectrics which have symmetric geometries.
More recent studies on this subject using the finite difference-time do-
main method, the finite element method or the method of lines have
been reported [7–12]. Numerical results of these methods can not pro-
vide physical picture of how the microwave modes interact with a ma-
terial sample.

In this paper, we present a method which solves Maxwell’s equations
in a cavity in the presence of a material sample based on an Electric
Field Integral Equation (EFIE) or a Magnetic Field Integral Equation
(MFE). This method is quite powerful because it can deal with a mate-
rial sample of arbitrary geometry. Also it gives more physical pictures
on the coupling of cavity modes with the material sample.

In many studies involving this type of problem, the unknown in-
duced electric field inside the cavity is expanded only in terms of the
normal cavity electric modes which are completely solenoidal. This is
not correct for the following reason [13–18]. When a material sample
is placed in the cavity, the initial cavity electric field will induce elec-
tric charges on the surface of the material sample if it is of finite size
or at the heterogeneity boundaries if it is heterogeneous. Thus, the
divergence of the electric field will not be zero at the locations of the
induced charges, or the divergence of the electric field will not vanish
at all points in the cavity. Therefore, the normal cavity electric modes
which are solenoidal are not sufficient to represent the unknown in-
duced electric field inside the material sample. Additional eigenmodes
which are irrotational are needed.
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In this paper, a complete set of vector wave functions which include
both solenoidal and irrotational functions are employed and the elec-
tric field and magnetic field integral equations are derived based on the
expansion of these vector wave functions. When solving the integral
equation, the convergence property of the derived dyadic Green’s func-
tion plays a vital role; thus several methods are explored to increase
the convergence rate of the dyadic Green’s function. One efficient way
to achieve this goal is to reduce the infinite triple summation over the
cavity eigenfunctions in the expression of the dyadic Green’s function
to the infinite double summation. For some material samples with spe-
cific geometries, a scheme of separating the material sample into the
boundary layer region and the interior volume region is proposed. This
scheme tends to improve the convergence of numerical results and also
to save computation time.

Induced electric fields in some material samples with specific ge-
ometries have been calculated. Numerical results agree well with some
theoretical estimations and analytical results produced by a mode-
matching method described in a companion paper [19] in this issue.

2. DERIVATION OF EFIE AND MFIE IN CYLINDRICAL
CAVITIES

The eigenfunction expansion of dyadic Green’s functions in electro-
magnetic theory provides a systematic means of constructing and in-
terpreting these dyadics [13]. These functions were first introduced
by Hansen [20–22]. In his original work [20], Hansen introduced three
kinds of vector wave functions, denoted by �L, �M, and �N , which are
the solutions of the homogeneous vector Helmholtz equations. In this
paper, three vector wave functions �Lnml, �Mnml, and �Nnml which are
defined in a cylindrical cavity are used as the basis functions to repre-
sent the unknown scattered electric field inside the cylindrical cavity
containing a material sample. The orthogonality and completeness of
the vector wave functions �Lnml, �Mnml, and �Nnml assure that they
form a complete and orthogonal set of basis functions [23]. The details
of these vector wave functions are given in Appendix I.

The distribution of electromagnetic fields at any point in an ener-
gized cylindrical cavity with a non-ionic material sample placed inside
can be investigated based on Maxwell’s equations. The dielectric pa-
rameters of the material sample under consideration are permittivity
ε = ε′ − jε′′ , permeability µ0 and conductivity σ . The dimensions
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Figure 1. Dimensions of the cylindrical cavity and the material sam-
ple. The center of the material sample is consistent with the center of
the cavity. The operating frequency is 2.45 GHz.

of the cylindrical cavity and the material sample are shown in Fig. 1.
Maxwell’s curl equations in the material sample can be written as

{
∇× �E(�r) = −jωµ0

�H(�r)
∇× �H(�r) = σ�E(�r) + jωε�E(�r)

(1)

where �E(�r) and �H(�r) are the unknown electric and magnetic fields
in the material sample we wish to determine. In the empty cavity, the
Maxwell’s equation is given by{

∇× �Ei(�r) = −jωµ0
�H i(�r)

∇× �H i(�r) = jωε0
�Ei(�r)

(2)

where �Ei(�r) and �H i(�r) are the initial electric and magnetic fields we
assumed.

The initial cavity fields will induce electric currents and charges in-
side the material sample. These induced electric currents and charges,
in turn, will produce the scattered fields or the secondary fields �Es(�r)
and �Hs(�r) . Thus, {

�E(�r) = �Es(�r) + �Ei(�r)
�H(�r) = �Hs(�r) + �H i(�r)

(3)
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In case the material sample is of finite size or heterogeneous, there
will be induced charges on the sample surface or at the heterogeneity
boundaries. Thus, ∇ · �Es will not be zero at the locations of the
induced charges. (�Es(�r) has an irrotational component.) However,
∇ · �Hs is zero at any points inside the cavity even though there is
a non-magnetic material sample placed within the cylindrical cavity.
The solenoidal eigenfunctions can thus form a complete set of basis
functions to represent �Hs(�r) . The wave equations for the scattered
fields are derived as

∇×∇× �Es(�r) − k2
0
�Es(�r) = −jωµ0

�Jeq(�r) (4)

∇2 �Hs(�r) + k2
0
�Hs(�r) = −∇× �Jeq(�r) (5)

where the equivalent current is given by

�Jeq(�r) = [σ + jω(ε − ε0)]�E(�r) = τe(�r)�E(�r) (6)

τe(�r) = σ + jω(ε − ε0) is the equivalent complex conductivity, and
k2

0 = ω2µ0ε0 .
Representing the scattered fields in terms of the complete sets of

basis functions, we have

�Es(�r) =
∑

n

[
an

�Ln(�r) + bn
�Mn(�r) + cn

�Nn(�r)
]

(7)

�Hs(�r) =
∑

n

dn
�Hn(�r) (8)

where �Hn(�r) is the normal cavity magnetic mode. Substituting Eqs.
(7) and (8) into the wave Eqs. (4) and (5), we obtain the expressions
for the scattered fields (see details in Appendix II) as

�Es(�r) = − jωµ0

∫
Vsample

τe

(
�r′

)
�E

(
�r′

)
· Ge0

(
�r′,�r

)
dv′ +

jωµ0τe(�r)�E(�r)
k2

0

(9)

�Hs(�r) =
∫

vsample

�Jeq

(
�r′

)
· Gm

(
�r′,�r

)
dv′ (10)

where the dyadic Green’s functions are given as (see Appendix II and
[23]),

Ge0

(
�r′,�r

)
=

∑
n

[
q2
n

�Mn (�r′) �Mn(�r)
k2

0

(
q2
n − k2

0

) + k2
n

�Nn (�r′) �Nn(�r)
k2

0

(
k2

n − k2
0

)
]

(11)
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Gm

(
�r′,�r

)
= −µ0

ε0

∑
n

∇′ × �Hn (�r′) �Hn(�r)
p2

n − k2
0

(12)

and q2
n =

(
p′

nm

a

)2
+

(
lπ
c

)2
, k2

n =
(pnm

a

)2 +
(

lπ
c

)2
are the respective

eigenvalues of the basis functions �Mn and �Nn . In Eq. (12), pn is
equal to either qn or kn . Therefore, EFIE and MFIE can be derived
from Eqs. (3), (9), and (10) as

�E(�r)
(
1 − jωµ0τe(�r)

k2
0

)
+ jωµ0

∫
vsample

τe

(
�r′

)
�E

(
�r′

)
· Ge0

(
�r′,�r

)
dv′= �Ei(�r)(13)

�H(�r) −
∫

vsample

τe

(
�r′

) ∇′ × �H (�r′)
σ + jωε

· Gm

(
�r′,�r

)
dv′= �H i(�r)(14)

After some mathematical manipulations, EFIE (13) and MFIE (14)
can be proved to be consistent [23]. Therefore, we will only solve
EFIE (13) in the following sections. It is noted that some details of
the derivation of EFIE are given in Appendix II to show that a delta
function in the original dyadic Green’s function was extracted to reach
the EFIE of Eq. (13). This may help in an explanation given in the
numerical example of a thin dielectric rod material sample about the
extraction of a delta function. The derivation of MFIE is quite lengthy,
thus, interested readers are referred to [23].

3. GALERKIN’S METHOD

Pulse functions are used as both basis and testing functions in the
moment method. The material sample is divided into M volume cells
and �E(�r) is assumed to be constant in each subvolume cell. We will
denote the mth subvolume by vm and the position of a representative
interior point of vm by �rm . After some manipulations for EFIE (13)
[23], we obtain

M∑
l=1





1 − jωµ0

k2
0

∫
vn

τe(�r)dv


 Iδnl + jωµ0Gienl(�rl,�rn)


 · �E(�rl)

= �Ei(�rn)vn (15)



Quantification of the induced electric field 319

where

Gienl(�rl,�rn) =
∫
vl

τe

(
�r′

) ∫
vn

Ge0

(
�r′,�r

)
dv dv′ (16)

δnl =
{

1 if n = l
0 if n �= l

(17)

I is a unit dyadic and n = 1, 2, . . . , M . Equation (15) can be ex-
pressed in a matrix format as

[Anl]3M×3M · [El]3M×1 = [Bl]3M×1 (18)

where

[Anl]3M×3M =




[
Anl

]
rr

[
Anl

]
rϕ

[
Anl

]
rz[

Anl

]
ϕr

[
Anl

]
ϕϕ

[
Anl

]
ϕz[

Anl

]
zr

[
Anl

]
zϕ

[
Anl

]
zz


 (19)

Anl =


1 − jωµ0

k2
0

∫
vn

τe(�r) dv


 Iδnl + jωµ0Gienl(�rl,�rn) (20)

[El]3M×1 = [E1r . . . EMr E1ϕ . . . EMϕ E1z . . . EMz] (21)
[Bl]3M×1 = [Ei

r(�r1)v1 . . . Ei
r(�rM )vM Ei

ϕ(�r1)v1 . . . Ei
ϕ(�rM )vM

· Ei
z(�r1)v1 . . . Ei

z(�rM )vM ]T (22)

4. NUMERICAL TECHNIQUES

In the matrix composition (19), the integrations of the dyadic Green’s
function Geo(�r′,�r) with respect to both variables �r and �r′ at different
points in the material sample as specified in Eqs. (16) and (20) need
to be carried out. However, the convergence property of the dyadic
Green’s function Geo(�r′,�r) is very poor [24]. This causes its integration
to have a poor convergence property also.

To save computation time we can reduce the triple summation in the
dyadic Green’s function to a double summation based on the following
two relations [23]:
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∞∑
l=1

sin
(

lπ

c
z

)
sin

(
lπ

c
z′

)

k2
n − k2

0

=
c

2kgnm sin(kgnmc)

· sin[kgnm(c − zb)] sin(kgnmzs) (23)

∞∑
l=0

ε0l cos
(

lπ

c
z

)
cos

(
lπ

c
z′

)

2(k2
n − k2

0)
=

−c

2kgnm sin(kgnmc)

· cos[kgnm(c − zb)] cos(kgnmzs) (24)

where

ε0l =
{

1 if l = 0
2 if l �= 0 (25)

kgnm =
√

k2
0 − k2

n0 (26)

k2
n0 =

(
p′nm

a

)2

or
(pnm

a

)2
(27)

zb ≡ the greater of z or z′ (28)
zs ≡ the lesser of z or z′ (29)

It is noted that there is a factor of sin(kgnmc) in the denominators
in Eqs. (23) and (24). When kgnmc = iπ , where i is an integer,
there exists a singularity. For this case, we could sum over the index l
directly by taking into a account a slight shift in the resonant frequency
[23]. This procedure is justified from the experimental observation
that when a small material sample is placed into a resonant cavity,
its resonant frequency will be slightly shifted. Numerically we found
that a frequency shift of up to 10% does not affect the final numerical
results significantly [23].

If the initial electric field is tangential to the major part of the mate-
rial sample surface, we found that more summation terms are needed in
the computation of the induced electric field. For such case, we suggest
the scheme of separating the material sample into interior volume and
boundary layer regions to approximately obtain the numerical results.
This is because the divergence of the electric field does not vanish only
at the boundary of a homogeneous material sample of finite size where
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the induced electric charges reside and the divergence of the electric
field still vanishes in the interior of a homogeneous material sample.
Therefore, the irrotational part of the basis functions will not be needed
in the representation of the scattered electric field in the interior vol-
ume region. That is, two different EFIEs can be derived for these two
different regions. EFIE (13) can be employed in the boundary layer
region and a new EFIE may be derived for the interior volume region
as follows.

The scattered electric field in the interior volume region of the ma-
terial sample may be represented only by the vector wave functions
�Mnml and �Nnml as

�Es(�r) =
∞∑

n=1

[
en

�Mn(�r) + fn
�Nn(�r)

]
(30)

Substituting Eq. (30) into Eq. (4) and applying some mathematical
manipulations (Appendix II or [23]), EFIE for the induced electric
field in the interior volume region can be derived as

�E(�r) + jωµ0

∫
v

τe

(
�r′

)
�E

(
�r′

)
· Ges

(
�r′,�r

)
dv′ = �Ei(�r) (31)

where the dyadic Green’s function in the interior volume region is
identified as

Ges

(
�r′,�r

)
=

∑
n

[
�Mn (�r′) �Mn(�r)

q2
n − k2

0

+
�Nn (�r′) �Nn(�r)

k2
n − k2

0

]
(32)

After the material sample is divided into the boundary layer and inte-
rior volume regions, EFIE (13) is applied to the former and EFIE (31)
latter. These two EFIEs can be combined and solved by the Galerkin
method to yield a matrix equation similar to Eq. (18). Numerical re-
sults demonstrate that the dyadic Green’s function given by Eq. (32)
may converge much faster than that in EFIE (13) [23]. Therefore, this
scheme tends to improve the convergence of numerical results and also
produces better results.
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5. NUMERICAL EXAMPLES

In the cylindrical cavity, we deal with the Bessel functions or their
derivatives and their numerical integrations in the formation of the
matrix (19). These numerical integrations require extensive computa-
tion and a super computer may be needed to find the numerical solution
of the EFIE for a material sample of arbitrary geometry. However, for
some special cases we can simplify the expression of the dyadic Green’s
function and numerically solve the EFIE in the cylindrical cavity.

We assume that a material sample which is azimuthally symmetrical
is placed in the center of a cylindrical cavity. If the initial cavity mode
is not a function of variable ϕ , for example TM012 , then due to the
symmetry property [24, 27] the scattered electric field induced by this
material sample and the total electric field in the cavity will not be
functions of variable ϕ . Therefore, in the numerical computation for
this special case, the eigenfunctions with n = 0 will be sufficient to
represent the unknown electric field. The expression for the dyadic
Green’s function in the double summation format over indices n and
m will be further reduced to the single summation format over index
m .

In the following numerical computations, the dimensions of the
cylindrical cavity are shown in Fig. 1. The initial cavity mode is TM012

and the resonant frequency of the empty cavity operating at this ini-
tial mode is 2.45 GHz. This resonant frequency of the cavity will shift
slightly downward when a material sample is placed inside as discussed
in [23]. A material sample in the form of a circular cylinder with the
diameter d0 and the height h0 is placed in the center of the cylindri-
cal cavity as shown in Fig. 1. Using the Galerkin method, the material
sample is uniformly divided into M = nd × ld volume cells, where
nd and ld are the numbers of the volume cells in the r and z di-
rections, respectively. Several material samples with selected shapes
and dimensions have been studied, and numerical results were com-
pared with some theoretical approximations and analytical results of
a mode-matching method.

5.1 Cubic-Like Material Sample

The dimensions of the cubic-like material sample, having the diam-
eter equal to the height, are set to be d0 = 0.004 m and h0 = 0.004 m
with nd = 1 and ld = 2 . The relative permittivity of the material
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sample is εr = 2.5 . The cavity resonant frequency is assumed to shift
down 5% after the material sample is placed inside the cavity. Since
the sample is electrically small, the induced electric field inside the ma-
terial sample can be estimated by the electrostatic field induced inside
of a dielectric sphere as E = 3

2+εr
Ei [24, 27].

Numerical results presented in Figure 2 show that the induced elec-
tric fields are uniform in each volume cell and the Ez component of
the induced electric field dominates the other two components due to
the small dimensions of the material sample. The ratio of the Ez com-
ponent of the induced electric field to that of the initial electric field
in the material sample is found to be 0.65 in each volume cell while
the electrostatic estimation of Ez/Ei

z = 3
2+εr

gives the approximation
of 0.667. Thus, numerical results and the theoretical estimation are in
satisfactory agreement.

For the stability check of the numerical results, we increase the
dimensions of the cubic-like material sample to: d0 = 0.02 m and
h0 = 0.02 m with nd = 5 and ld = 10 . The numerical results are
shown in Fig. 2 where the cavity resonant frequency shift is assumed
to be 8% [23] after the placement of the material sample. Since the z
component of the induced electric field dominates, only the ratios of the
z components of the induced electric field to that of the initial electric
field in the material sample are plotted, in Fig. 2, as a function of r ,
for the lower half of the sample. (Numerical results are symmetrical
with respect to the center of the sample.) We observe that due to the
increase in the material sample dimensions, the ratios in Fig. 2 are
now reduced to about 0.51 to 0.62. This indicates that the induced
electric field in a larger sample will be smaller than the value given
by the electrostatic estimation. In Fig. 2, analytical results, produced
by a mode-matching method presented in a companion paper [19], for
the same material sample are plotted for the comparison. The results
of the integral equation method and the mode-matching method agree
quite well.

5.2 Thin Disk Material Sample

The dimensions of the material sample with the shape of a thin
disk, having its height much smaller than its diameter, are assumed
to be h0 = 0.002 m and d0 = 0.04 m with nd = 10 and ld = 1 .
The relative permittivity of the material sample is εr = 2.5 . The
cavity resonant frequency shift is assumed to be 1% after the material
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Figure 2. Ratio of Ez/Ei
z varies in the r direction at the different

locations of z , obtained from the integral equation method and the
mode-matching method. Results of these two different methods are
compared to check the numerical accuracy of the former. The dimen-
sions of the material sample are d0 = 0.02 m and h0 = 0.02 m with
the relative permittivity of εr = 2.5 . The initial field is assumed to
be a TM012 mode operating at 2.45 GHz.

sample is placed inside. Because only the z component of the initial
electric field is significant near the center of the cylindrical cavity and
the material sample has a thin disk geometry, theoretically the induced
electric field in the material sample can be estimated by the boundary
condition of E = (1/εr)Ei = 0.4Ei . The numerical results are shown
in Fig. 3.

In Fig. 3, the ratios of the z component of the induced electric field
to that of the initial electric field are plotted as a function of the radial
distance, r , of the material sample. We observe that the numerical
results are consistent with the theoretical estimation as expected.
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Figure 3. Ratio of Ez/Ei
z varies in the r direction. The dimensions

of the material sample are d0 = 0.04 m and h0 = 0.002 m with the
relative permittivity of εr = 2.5 . The initial field is assumed to be a
TM012 mode operating at 2.45 GHz.

5.3 Thin Dielectric Rod Material Sample

The dimensions of the material sample are: h0 = 0.044 m and
d0 = 0.008 m with nd = 2 and ld = 22 . The relative permittivity of
the material sample is εr = 2.5 . The cavity resonant frequency shift is
assumed to be 1% after the material sample is placed inside. For this
case, the induced electric field inside the material sample should be
approximately equal to the initial electric field because the initial elec-
tric field is tangential to the major part of the material sample surface,
and the continuity of the tangential component of the electric field at
the material sample surface requires this estimation. The numerical
results are shown in Fig. 4.

In Fig. 4, we observe that the maximum ratio of the z-component
of the induced electric field to that of the initial electric field is around
0.8 which is not very close to 1. For this ratio to be close to 1 or
�E(�r) ≈ �Ei(�r) , the second term and the third term (the integral) of
EFIE (13) should nearly cancel each other. Since the second term
was created from the extraction of a delta function from the original



326 Zhang and Chen

Figure 4. Ratio of Ez/Ei
z varies in the z direction at the different lo-

cations of r . The dimensions of the material sample are d0 = 0.008 m
and h0 = 0.044 m with the relative permittivity of ε = 2.5 . The initial
field is assumed to be a TM012 mode operating at 2.45 GHz.

Green’s function behind the integration sign (see Appendix II), another
delta function is needed to be generated from the third term to cancel
the second term. Thus, we will need much more summation terms for
this special case to meet this requirement. However, if we increase the
upper limit in the double summation, the numerical results become
closer to the theoretical estimation but at the expense of increasing
the computation time.

For this thin dielectric rod material sample, if we employ the scheme
of separating the material sample into boundary layer and interior
volume regions, the results are improved and at the same time the
computation time is reduced. In this computation, the dimensions
of the material sample are: d0 = 0.008 m and h0 = 0.044 m with
nd = 1 and ld = 20 for the division of the interior volume region.
The dimensions of the volume cells in the boundary layer region are:
br = 0.002 m and bz = 0.002 m in the r and z directions, respectively.
The number of the total volume cells in the boundary layer and interior
volume regions is: 2 × 22 = 44 which is the same as the previous
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computation. The cavity resonant frequency shift is assumed to be
1% after the material sample is placed inside. The upper limits in the
modes summation are chosen as 200 for the boundary layer region and
150 for the interior volume region. The numerical results are shown in
Fig. 5.

Since we are only interested in the induced electric field inside the
material sample, only the solutions for the volume cells in the interior
volume region are plotted in Fig. 5. Because the numerical results show
that the z components of the induced electric field dominate in the
material sample, only the ratios of the z components of the induced
electric fields to that of the initial electric field in the interior volume
region are plotted as a function of z in Fig. 5. We observe that the
ratios are now very close to 1.

In the scheme of separating the material sample into the boundary
layer and interior volume regions for the thin dielectric rod material
sample, we keep the number of the volume cells the same as the previ-
ous computation. However, the upper limit of the modes summation in
the interior volume region is reduced to 150. Hence, the computation
time is saved and at the same time better results are obtained.

5.4 Lossy Material Sample

In this numerical example, we will assume that the material sample
has a complex relative permittivity of εr = ε′ − jε′′ . In this compu-
tation, we assume ε′ = 2.5 and ε′′ = 1.5 with the dimensions of the
material sample as: d0 = 0.008 m and h0 = 0.008 m. The numerical
results are shown in Fig. 6.

In Fig. 6, we plot the ratios of the z components of the induced elec-
tric field to that of the initial electric field inside the material sample.
Due to the complex permittivity of the material sample, the induced
electric field has both the real and imaginary parts. Therefore, in Fig. 6
the upper graphs are for the real part and the lower ones are for the
imaginary part of the ratios.

5.5 Inhomogeneous Material Sample

In this numerical example, we assume that the material sample is
composed of two kinds of dielectric materials as shown in Fig. 7. The
relative permittivities of the two regions of the material sample are
denoted as ε1 and ε2 and their radii and heights denoted as r1, r2
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Figure 5. Ratio of Ez/Ei
z varies in the z direction with the scheme of

separating the material sample into the boundary layer and interior vol-
ume regions. The dimensions of the material sample are d0 = 0.008 m
and h0 = 0.044 m with the relative permittivity of ε = 2.5 . The initial
field is assumed to be a TM012 mode operating at 2.45 GHz.

and h1, h2 , respectively.
If the dimensions of the material sample are electrically small com-

pared with the operating wavelength and the diameter/height ratio is
close to one, we can estimate the ratios of the z components of the
induced electric fields inside the material sample to that of the initial
electric field by the electrostatic approximations of a corresponding
concentric sphere with two different dielectric regions as [23],

E1

E0
=

−9ε0ε2r
−3
1

(ε1 + 2ε2)(ε2 + 2ε0)r−3
1 + 2(ε1 − ε2)(ε2 − ε0)r−3

2

(33)

E2

E0
= 3ε0

(ε1 − ε2)r−3 − (ε1 + 2ε2)r−3
1

(ε1 + 2ε2)(ε2 + 2ε0)r−3
1 + 2(ε1 − ε2)(ε2 − ε0)r−3

2

(34)

In this numerical example, the dimensions of this inhomogeneous mate-
rial sample are chosen as: r1 = 0.002 m, h1 = 0.004 m, r2 = 0.004 m
and h2 = 0.008 m, and with the relative permittivities as ε1 = 2.5
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Figure 6. Ratios of Ez/Ei
z varies in the r direction. Each curve

represents this ratio as a function of r for different locations of z in a
material sample when the material sample has a complex permittivity
of εr = 2.5 − j1.5 . The dimensions of the material sample are: di-
ameter d0 = 0.008 m and height h0 = 0.008 m. The upper graphs are
for the real part of the ratios and the lower ones are for the imaginary
part of the ratios. The initial field is assumed to be a TM012 mode
operating at 2.45 GHz.

and ε2 = 4.0 . Equations (33) and (34) give the electrostatic estima-
tions of the ratios of the z components of the induced electric fields in
the inhomogeneous material sample to that of the initial electric field
as 0.5818 in region 1 and 0.5091 in region 2. The numerical results
are shown in Fig. 8, where we observe that the numerical results are
consistent with the electrostatic estimations.
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Figure 7. An inhomogeneous material sample is placed in the center
of a cylindrical cavity.

5.6 Irregularly Shaped Material Sample

In this numerical example, we assume the material sample to have an
irregular shape but keep the material sample azimuthally symmetrical
in order to save the computation time. The shape of the material
sample is shown in Fig. 9. We assume the dimensions of the material
sample as: h1 = 0.004 m, h2 = 0.008 m, d1 = 0.016 m and d2 =
0.008 m, and with the relative permittivity of ε1 = 2.5 . The numerical
results are shown in Fig. 10.

5.7 Numerical Convergence

In our numerical calculations, we transformed the triple summation
into double summation in order to reduce the computation time. The
singularity of the dyadic Green’s function, however, still exists. After
this transformation the singularity is expressed in the form of kgnm

in Eq. (26). We used the resonant frequency shifting to handle the
singularity integration problem.
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Figure 8. Ratios of Ez/Ei
z in the inhomogeneous material sample

with the dimensions of r1 = 0.002 m, h1 = 0.004 m, r2 = 0.004 m
and h2 = 0.008 m, where the relative permittivity in the shadowed
region is ε1 = 2.5 and that in the non-shadowed region is ε2 = 4.0 .
The electrostatic estimations of the ratios are R1 = 0.5818 and R2 ≈
0.5091 . The initial field is assumed to be a TM012 mode operating at
2.45 GHz.

In our numerical calculation for various material samples, it was
found empirically [23] that we need to sum up (200)3 modes to reach
the numerical convergence of the Green’s functions for a three-dimen-
sional case. If the symmetry was applied to reduce the problem to a
two-dimensional case, only (200)2 modes are needed in the summation.
For the discretation of the material sample into volume cells, it was
found that as long as the dimension of the volume cells is smaller than
1/10 wavelength, fairly accurate results can be produced.
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Figure 9. Geometry of an irregularly shaped material sample placed in
the cylindrical cavity. The material sample is azimuthally symmetrical
and the center of the material sample is consistent with the center of
the cylindrical cavity.

Figure 10. Ratios of Ez/Ei
z in an irregularly shaped material sam-

ple. The initial field is assumed to be a TM012 mode operating at
2.45 GHz.
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6. CONCLUSIONS

In this paper, the integral equation method is applied to quantify the
induced electric field in a material sample placed in a cylindrical cavity.
Numerical results demonstrate that the integral equation method is a
powerful technique. It can be employed to solve the problem involving
the material sample with any arbitrary shape or heterogeneity. The
only disadvantage of the integral equation method is its slow numerical
convergence and a large computation time. To our best knowledge,
this is the first attempt to solve this type of problem using the integral
equation method.

APPENDIX I: VECTOR WAVE FUNCTIONS, �Lnml, �Mnml

AND �Nnml , IN A CYLINDRICAL CAVITY

The expressions for these vector wave functions are:
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where ε0n is defined in Eq. (25). Parameters pnm and p′nm are the
mth roots of the nth Bessel function Jn(r) and the derivative of the
nth Bessel function, J ′

n(r) , respectively. Dimensions a and c are the
radius and height of the cavity, respectively.
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The vector wave functions satisfy the following wave equations:

∇2�Lnml + k2
nml

�Lnml = 0, ∇× �Lnml = 0

∇2 �Mnml + q2
nml

�Mnml = 0, ∇ · �Mnml = 0

∇2 �Nnml + k2
nml

�Nnml = 0, ∇ · �Nnml = 0

where k2
nml =

(pnm

a

)2 +
(

lπ
c

)2
, q2

nml =
(

p′
nm

a

)2
+

(
lπ
c

)2
.

APPENDIX II: DERIVATION OF EFIE (13)

Substitution of Eq. (7) into Eq. (4) gives
∑

n

[
−k2

0an
�Ln(�r) + bn(q2

n − k2
0) �Mn(�r) + cn(k2

n − k2
0)�Nn(�r)

]

= −jωµ0
�Jeq(�r) (II.1)

based on the properties of �Ln, �Mn, and �Nn functions as given in
Appendix I.

Due to the orthogonality of �Ln, �Mn, and �Nn functions, an, bn,
and cn can be determined from Eq. (II.1) as
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Therefore,

�Es(�r) = −jωµ0
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If the identity [24] of
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is used, we can rewrite
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If Eq. (II.5) is substituted into Eq. (II.2), we have
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Substituting Eq. (II.7) into the relation of �E(�r) = �Es(�r) + �Ei(�r) , we
obtain the EFIE:
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(II.8)
As we know, there exists very poor convergence property in the dyadic
Green’s function Ge [24]. However, extracting the delta function from
the dyadic Green’s function Ge does not improve its singularity or
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convergency. Our main purpose is to make EFIE (13) and MFIE (14)
consistent. Therefore, we may only solve EFIE (13) in our numerical
computations.
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