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1. INTRODUCTION

In a companion paper [1] published in this issue, an electric field inte-
gral equation (EFIE) method was developed to quantify the induced
electric field inside a material sample placed in an energized cavity.
It was demonstrated that the integral equation method is a power-
ful technique because it can handle the material sample of arbitrary
shapes and heterogeneities. The only disadvantage of this method is its
slow numerical convergence and a large computation time. To provide
a numerical check tor the integral equation method, a mode-matching
method is developed in this paper to study the same subject.

We consider a cylindrical cavity coaxially loaded with a homoge-
neous material sample of simple geometry and excited by a current
probe. A mode-matching method combined with a Green’s function
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technique for the excitation probe is applied to determine the induced
electric field inside the material sample as well as the fields in other
parts of the cavity. Analytical results of the mode-matching method
are then used to verify the numerical accuracy of the integral equation
method. It is noted that the mode-matching method can only handle
homogeneous material samples with simple geometries. However, it
can provide sufficient information for the verification of the integral
equation method.

In fact, the mode-matching method has been used by a number
of workers to analyze dielectric-loaded cavities [2–6]. These previous
studies were mainly concerned with the resonant frequency and the
field distribution, and the excitation of a current probe was not consid-
ered. Similar problems involving the interaction of the cavity field and
a material sample inside a cavity have been studied by other methods,
including the surface integral equation method, the finite difference-
time domain method, the finite element method and the method of
lines [7–13].

Applying the mode-matching method to a homogeneous material
sample with a simple cylindrical geometry placed within a cylindrical
cavity, we can divide the cavity into three waveguide regions as shown
in Fig. 1, where regions I and III are the normal waveguide regions
filled with a homogeneous material or empty and region II is the inho-
mogeneously filled waveguide region containing the material sample.
The waveguide eigenmodes in region II are derived first while those
in regions I and III are well known. The EM fields in each region are
expressed in terms of its eigenmodes, and the tangential components
of the electric and magnetic fields are matched at the junctions of the
three regions. The equations resulted from the matching of the bound-
ary conditions are then numerically solved. The numerical results agree
well with that obtained using the integral equation method. It is also
shown that the mode-matching method can save a great deal of com-
putation time attributed to the use of the well-defined eigenmodes and
sparse resultant matrices.

2. EIGENMODES IN AN INHOMOGENEOUSLY FILLED
WAVEGUIDE

The geometry of an inhomogeneously filled waveguide is shown in Fig. 2
which consists of two sub-regions having the same central axis. The
central sub-region is a homogeneous material sample and the outer
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Figure 1. Geometry of the material sample placed in a cylindrical
cavity driven by an excitation probe.

Figure 2. Geometry of the inhomogeneously filled waveguide which is
region II in Fig. 1.

sub-region is empty space. It is noted that if the material sample has
an irregular shape or is heterogeneous, the eigenmodes in such an in-
homogeneously filled waveguides will be difficult, if not impossible, to
be determined. Therefore, in this paper we only deal with the homo-
geneous material samples with simple cylindrical geometries which are
placed coaxially in the cavity.
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The normal eigenmodes in this inhomogeneously filled waveguide
are not, in general, either TE or TM modes, but a combination of an
TE and an TM mode, a hybrid eigenmode. An exception is the case
of n = 0 modes which will be shown later.

In Fig. 2, the dielectric parameters of sub-region 1 are: relative per-
mittivity ε1 , permeability µ1 and conductivity σ1 , and its radius b .
The parameters of sub-region 2 are: relative permittivity ε2 , perme-
ability µ2 and conductivity σ2 with radius a . Based on the relations
between the longitudinal and the transverse components of the electro-
magnetic fields given in [14], we obtain the electromagnetic eigenmodes
in these two sub-regions when n �= 0 as follows:

In sub-region 1, the electromagnetic eigenmodes can be expressed
as

Ez1 =Anmk2
c1Jn(kc1r) cos nθe−Γnmz (1)

Hz1 =Bnmk2
c1Jn(kc1r) sinnθe−Γnmz (2)

Er1 =
[
−jωµ1Bnm

n

r
Jn(kc1r) − AnmΓnmkc1J

′
n(kc1r)

]

· cos nθe−Γnmz (3)

Eθ1 =
[
jωµ1Bnmkc1J

′
n(kc1r) + AnmΓnm

n

r
Jn(kc1r)

]

· sinnθe−Γnmz (4)

Hr1 =
[
−BnmΓnmkc1J

′
n(kc1r) − jωεc1Anm

n

r
Jn(kc1r)

]

· sinnθe−Γnmz (5)

Hθ1 =
[
−BnmΓnm

n

r
Jn(kc1r) − jωεc1Anmkc1J

′
n(kc1r)

]

· cos nθe−Γnmz (6)

In sub-region 2, the electromagnetic eigenmodes can be expressed as

Ez2 = [CnmJn(kc2r) + DnmYn(kc2r)] k2
c2 cos nθe−Γnmz (7)

Hz2 = [EnmJn(kc2r) + FnmYn(kc2r)] k2
c2 sinnθe−Γnmz (8)

Er2 =
{
−jωµ2

n

r
[EnmJn(kc2r) + FnmYn(kc2r)]

− Γnmkc2

[
CnmJ ′

n(kc2r) + DnmY ′
n(kc2r)

]}
cos nθe−Γnmz (9)

Eθ2 =
{

jωµ2kc2

[
EnmJ ′

n(kc2r) + FnmY ′
n(kc2r)

]
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+ Γnm
n

r
[CnmJn(kc2r) + DnmYn(kc2r)]

}
sinnθe−Γnmz (10)

Hr2 =
{
−Γnmkc2

[
EnmJ ′

n(kc2r) + FnmY ′
n(kc2r)

]

− jωεc2
n

r
[CnmJn(kc2r) + DnmYn(kc2r)]

}
sinnθe−Γnmz (11)

Hθ2 =
{
−Γnm

n

r
[EnmJn(kc2r) + FnmYn(kc2r)]

− jωεc2kc2

[
CnmJ ′

n(kc2r) + DnmY ′
n(kc2r)

]}
cos nθe−Γnmz (12)

where

k2
c1 = ω2µ1εc1 + Γ2

nm (13)
k2

c2 = ω2µ2εc2 + Γ2
nm (14)

and εci = ε0

(
εi + σi

jωε0

)
, i = 1, 2 .

Applying the boundary conditions to these Eqs. (1)–(12), we can
obtain the characteristic equation for the eigenmodes in region II as

(
Γnm

n

b
Jn(kc1b)

(
1 − k2

c1

k2
c2

))2

= ω2{µ2kc2CEFB[Y ′
n(kc2a)J ′

n(kc2b) − J ′
n(kc2a)Y ′

n(kc2b)]
+ µ1kc1J

′
n(kc1b)}{εc2kc2CCDA[Jn(kc2a)Y ′

n(kc2b)
− Yn(kc2a)J ′

n(kc2b)] − εc1kc1J
′
n(kc1b)} (15)

When n = 0 , the eigenmodes in region II can be either TM or TE
modes. The characteristic equations for the TM or TE mode are ex-
pressed by

J0(kc2a)
[
kc2

kc1

Y0(kc2b)
J0(kc1b)

− εc2

εc1

Y ′
0(kc2b)

J ′
0(kc1b)

]

− Y0(kc2a)
[
kc2

kc1

J0(kc2b)
J0(kc1b)

− εc2

εc1

J ′
0(kc2b)

J ′
0(kc1b)

]
= 0 (16)

J ′
0(kc2a)

[
µ2

µ1

Y ′
0(kc2b)

J ′
0(kc1b)

− kc2

kc1

Y0(kc2b)
J0(kc1b)

]

− Y ′
0(kc2a)
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µ2

µ1

J ′
0(kc2b)

J ′
0(kc1b)

− kc2

kc1

J0(kc2b)
J0(kc1b)

]
= 0 (17)
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Using the relations between kc1, kc2 and Γnm given in Eqs. (13) and
(14), we can numerically obtain the propagation constant Γnm for each
eigenmode and then determine the corresponding eigenvalues kc1 and
kc2 . Thus, the eigenmodes in this inhomogeneously filled waveguide
can be determined.

3. ELECTROMAGNETIC FIELDS IN THREE REGIONS

The electromagnetic fields in each region can then be expressed as the
infinite summations of the eigenmodes in the corresponding region.
Because we assume that there is an excitation probe in region I, the
electric field in region I for 0 ≤ z ≤ z1 can be expressed as

�E1(�r) =
∫

V ′

�J(�r′) · G(�r′,�r) dV ′ (18)

where the dyadic Green’s function is given by [14]

G
(
�r′,�r

)
=

N1∑
n=1

−�en1 (r′, θ′)
2(1 − R1nR2n)

(1 + R1n)Zn

(
�E+

n1(�r) + R2n
�E−

n1(�r)
)

(19)
for z ≥ 0 and where �en1(r′, θ′) is the transverse component of the
eigenmode in region I, which is normalized as

∫

CS

�en1 ·�en1 dS = 1 (20)

�E±
n1(�r) is the eigenmode propagating in ±z direction. R1n = −e−2Γnz0

and Rn are the reflection coefficients of the nth mode due to the
short-circuit termination at z = −z0 and the discontinuity at z = z1

in region I, respectively. The wave impedances for the TE and TM
modes are expressed as

ZnTE =
jωµ

Γn
(21)

ZnTM =
Γn

jωε
(22)

where Γn is the wave propagation constant of the nth mode and
is given by Γ2

n = k2
c1 − ω2µ1ε1 with kc1 as the eigenvalue of the
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eigenmode; µ1 and ε1 are the dielectric parameters of the medium in
region I. The upper summation limit N1 is set to assure a convergent
result. The current density on the excitation probe is assumed to have
a sinusoidal distribution as

�J(�r) = r̂Im
sinβ(l − a + r)

sinβl
δ(θ)δ(z) (23)

where β is the wave number in the medium of region I, l is the length
of the excitation probe.

Rewriting the dyadic Green’s function (19) as

G(�r′,�r) =
N1∑
n=1

−�en1(r′, θ′)
2

(1 + R1n)Zn
�E+

n1(�r) +
N∑

n=1

−�en1(r′, θ′)
2(1 − R1nR2n)

· (1 + R1n)R2nZn

[
R1n

�E+
n1(�r) + �E−

n1(�r)
]

(24)

and substituting Eq. (24) into Eq. (18), we can obtain the electric field
in region I as:

�E1(�r) =
N1∑
n=1

VneΓnz1 �E+
n1(�r) +

N1∑
n=1

Ane−Γnz1

[
R1n

�E+
n1(�r) + �E−

n1(�r)
]

(25)
where

Vn = −1 + R1n

2
Zne−Γnz1

∫ [
�en1

(
r′, θ′

)
· �J

(
�r′

)]
dV ′ (26)

is known and

An = − 1 + R1n

2(1 − R1nR2n)
R2nZneΓnz1

∫ [
�en1

(
r′, θ′

)
· �J

(
�r′

)]
dV ′ (27)

is unknown due to the unknown reflection coefficient R2n . The mag-
netic field in region I can also be expressed as

�H1(�r) =
N1∑
n=1

VneΓnz1 �H+
n1(�r) +

N1∑
n=1

Ane−Γnz1

[
R1n

�H+
n1(�r) + �H−

n1(�r)
]

(28)
where �H±

n1(�r) is the eigenmode propagating in ±z direction.
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In region II, z1 ≤ z ≤ z2 , the electromagnetic fields can be repre-
sented as

�E2(�r) =
M∑

m=1

[
BmeΓmz1 �E+

m2(�r) + Cme−Γmz2 �E−
m2(�r)

]
(29)

�H2(�r) =
M∑

m=1

[
BmeΓmz1 �H+

m2(�r) + Cme−Γmz2 �H−
m2(�r)

]
(30)

where �E±
m2(�r) and �H±

m2(�r) denote the electromagnetic eigenmodes
propagating in ±z direction.

In region III, z2 ≤ z ≤ z3 , the electromagnetic fields can be repre-
sented as

�E3(�r) =
N2∑
n=1

DneΓnz2

[
�E+

n1(�r) + Rn
�E−

n1(�r)
]

(31)

�H3(�r) =
N2∑
n=1

DneΓnz2

[
�H+

n1(�r) + Rn
�H−

n1(�r)
]

(32)

where Rn = −e−2Γnc is the reflection coefficient at the termination of
z = z3 .

Applying the boundary conditions at the junctions of each region,
we obtain the equations for the unknown coefficients Bm and Cm as

[BM1]N1×M [B]M×1 + [CM1]N1×M [C]M×1 = [V S]N1×1 (33)
[BM2]N2×M [B]M×1 + [CM2]N2×M [C]M×1 = [0]N2×1 (34)

where the elements in each matrix are expressed as

BM1nm =
emn

1 − e−2Γn(z1+z0)
+

Z2
nhmn

1 + e−2Γn(z1+z0)
(35)

CM1nm =
eΓm(z1−z2)emn

1 − e−2Γn(z1+z0)
− Z2

neΓm(z1−z2)hmn

1 + e−2Γn(z1+z0)
(36)

emn =
∫

CS

�en1 ·�em2 dS (37)

hmn =
∫

CS

�hn1 · �hm2 dS (38)
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V Sn =
2Vn

1 − e−4Γn(z1+z0)
(39)

[B]M×1 = [B1, B2, . . . . . . BM ]T (40)
[C]M×1 = [C1, C2, . . . . . . CM ]T (41)

If we choose N1 = N2 = M , the matrices [BM1], [CM1], [BM2] , and
[CM2] in Eqs. (33) and (34) are square matrices and the solutions for
Bm and Cm can be expressed as

[B]M×1 =
[
[BM1] − [CM1][CM2]−1[BM2]

]−1 [V S] (42)

[C]M×1 =
[
[CM1] − [BM1][BM2]−1[CM2]

]−1 [V S] (43)

After the unknown coefficients Bm and Cm are obtained from Eqs.
(42) and (43), we may determine the electromagnetic fields in region
II; that is, the induced electric field in the material sample can be
quantified. The unknown coefficients An, Dn and the electromagnetic
fields in regions I and III can be obtained based on the numerical results
of region II.

4. NUMERICAL EXAMPLES

In this section, the numerical results based on the mode-matching
method will be demonstrated. As stated before, we restrict the ma-
terial samples which are placed in a cylindrical waveguide to be of
simple cylindrical shapes and homogeneous. The numerical results ob-
tained will be compared with the corresponding results derived using
the integral equation method [1].

In the numerical computation, the eigenmodes in region II are de-
rived first after the dimensions and the dielectric parameters of the
material sample are selected. The integrations of product of the eigen-
modes in regions I and II (given in Eqs. (37) and (38)) are then calcu-
lated. After the total electromagnetic fields are obtained, their numer-
ical results can be checked further by the boundary conditions at the
perfectly conducting walls and at the junctions of the different regions.

Examining the matrix Eqs. (33) and (34), we find that when V Sn =
0 for some indices n , the solutions for Bm and Cm become zero also.
Thus, we can select the eigenmodes based on both the values of V Sn

and the convergence property of the summation for the electromagnetic
fields in each region.
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In the following numerical computations, we assume the dimen-
sions of the cylindrical waveguide shown in Fig. 1 to be: the radius
a = 0.0762 m and the length c = 0.15458 m. A cylindrical material
sample with the dimensions of radius r0 and length h0 is placed in
the center of the waveguide. The position of the excitation probe is at
c/4 from the bottom of the waveguide, that is, z0 = c

4 and z3 = 3×c
4 .

The values of b, z1 and z2 are determined by the dimensions of the
material sample to be b = r0, z1 = c

2 − h0
2 − z0, and z2 = c

2 + h0
2 − z0 .

The length of the excitation probe is chosen as the half of the radius
of the waveguide, a/2 , and the operating frequency is 2.45 GHz. The
relative permittivity of the material sample is assumed to be εr = 2.5
and it is lossless.

Several special cases with selected shapes and dimensions of the
material sample, which can be compared with some theoretical ap-
proximations, have been studied.

4.1 Cubic-Like Material Sample

A cubic-like material sample, having the diameter equal to the
length, is placed in the center of the cylindrical waveguide. The di-
mensions of the material sample are chosen as: radius r0 = 0.004 m
and length h0 = 0.008 m.

In the numerical computation, the number of modes to be summed
is set to be 62 based on the non-zero values of the right hand side of the
Eq. (33). However, observing the numerical results for the solutions of
the unknown coefficients An and Dn in regions I and III, we find that
there only exist several waveguide modes with significant magnitudes
which are shown in Table 1; the TM01 mode appears as the dominant
mode. This result is expected because of the choice of the dimensions of
the cylindrical waveguide and the operating frequency of the excitation
probe. The computational results show that the electromagnetic fields
in each region do not vary significantly with respect to the variable θ
and the z component of the induced electric field dominates the other
two components of the electric field near the center of the waveguide.

Fig. 3 demonstrates the ratio of the z component of the induced
electric field in the material sample to that of the electric field near the
material sample in the empty region of the waveguide as a function of
z at r = 0.0004 m. The ratios are around 0.69 to 0.72 which are close
to 0.667 given by the electrostatic estimation of Ez/Ei

z = 3
2+εr

.
For a larger cubic-like material sample with the dimensions: r0 =
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Table 1. Significant modes in the mode-matching method when the
dimensions of the cavity are: a = 0.0762 m, c = 0.15458 m and that
of the material sample are: r0 = 0.004 m and h0 = 0.008 m. The
operating frequency is 2.45 GHz, and the excitation probe is located
at c/4 from the bottom.

Mode An (real, imaginary) Dn (real, imaginary)
TM01 −79.1583, 11.9465 78.8164, −14.0405
TM02 0, 0.5485 0, 0.3906
TM03 0, 0.8847 0, −0.8946
TM04 0, −1.1825 0, 1.1827
TM05 0, 1.4291 0, −1.4276
TM06 0, −1.6162 0, 1.6144
TM07 0, 1.7506 0, −1.7483
TM11 −0.1651, 0.1809 0.1798, 0.1671
TM12 −3.8618, 2.3057 4.4303, 0.7882

0.01 m and h0 = 0.02 m, the number of the modes is set to be 76. The
most significant values for the unknown coefficients An and Dn in
regions I and III still belong to the TM01 waveguide mode. Therefore,
the z component of the induced electric field dominates near the center
of the waveguide. Fig. 4 shows the ratio of the z component of the
induced electric field in the material sample to that of the electric field
in the empty waveguide near the material sample varying as a function
of r at the different locations of z . Due to the symmetric property
of the numerical solutions, we only plot the ratios in the lower half
of the material sample in Fig. 4. The corresponding results generated
from an integral equation method [1] are plotted in the same figure for
comparison. We observe a good agreement between these two sets of
numerical results generated by two different methods.

4.2 Thin Disk Material Sample

A material sample with the shape of a thin disk, having its length
much smaller than its diameter, is placed in the center of the cylindrical
waveguide. The dimensions of the material sample are h0 = 0.001 m
and r0 = 0.02 m and the number of the modes which are involved in
the computation is 55. The numerical results are shown in Fig. 5.
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Figure 3. Ratio of Ez/Ei
z varies in the z direction at r = 0.0004 m.

The dimensions of the material sample are r0 = 0.004 m and h0 =
0.008 m with the relative permittivity of εr = 2.5 . The dimensions of
the cylindrical waveguide are: a = 0.0762 m and c = 0.15458 m. The
operating frequency is 2.45 GHz.

Since the z component of the induced electric field dominates near
the center of the waveguide, the ratios of the z component of the
induced electric field to that of the electric field near the material
sample in the empty region of the waveguide are plotted as a function
of the radial distance, r , in Fig. 5. We observe that the numerical
results are close to the theoretical estimation given by the boundary
condition of E = (1/εr)Ei = 0.4Ei .

4.3 Thin Dielectric Rod Material Sample

A material sample with the dimensions: the length h0 = 0.044 m
and the radius r0 = 0.004 m, is placed in the center of the cylindrical
waveguide. The number of the modes involved in the computation is
129 and the numerical result is shown in Fig. 6.

Examining the numerical results for the solutions of the unknown
coefficients An and Dn in regions I and III, we find that those with
the most significant values belong to the TM01 waveguide mode; that
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Figure 4. Ratio of Ez/Ei
z varies in the r direction at the different

locations of z , obtained from the mode-matching method and the
integral equation method [1]. The dimensions of the material sample
are r0 = 0.01 m and h0 = 0.02 m with the relative permittivity of εr =
2.5 . The dimensions of the cylindrical waveguide are: a = 0.0762 m
and c = 0.15458 m. The operating frequency is 2.45 GHz.

is, the TM01 waveguide mode dominates in the empty region of the
waveguide. For this case, the induced electric field inside the material
sample should be approximately equal to the electric field in the empty
region near the material sample for the following reasons: First, the
electric field in the empty region near the material sample or near the
center of the waveguide is dominated by the z component and it is
tangential to the major part of the material sample surface. Secondly,
the continuity of the tangential component of the electric field at the
material sample surface requires this estimation.

In Fig. 6, we plot the ratios of the z component of the induced
electric field to that of the electric field near the material sample in
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Figure 5. Ratio of Ez/Ei
z varies in the r direction. The dimensions

of the material sample are r0 = 0.02 m and h0 = 0.001 m with the
relative permittivity of εr = 2.5 . The dimensions of the cylindrical
waveguide are: a = 0.0762 m and c = 0.15458 m. The operating
frequency is 2.45 GHz.

the empty region of the waveguide varying as a function of z at r =
0.0004 m. Most of the ratios are very close to 1 which is in agreement
with the theoretical estimation.

Considering the numerical accuracy and the computation time, we
find that in the mode-matching method the number of the modes to
be summed can be reduced a great deal when compared with the in-
tegral equation method. The most important reason for this finding
is that the eigenmodes used in the mode-matching method satisfy the
boundary conditions on the material sample and the cavity wall. (On
the other hand, the vector wave functions used in the integral equation
method only satisfy the boundary conditions at the cavity wall.)

The other reason for this finding is that in the mode-matching
method, the angular dependence of the eigenmodes, �en1, �em2, �hn1,
and �hm2 , on θ is sin nθ or cos nθ , and many of the integrations of the
scalar products of these eigenmodes given in Eqs. (37) and (38) become
zero due to the orthogonality of the sinusoidal functions. Therefore,
the matrices [BM1], [CM1], [BM2] , and [CM2] given in Eqs. (33)
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Figure 6. Ratio of Ez/Ei
z varies in the z direction at r = 0.0004 m.

The dimensions of the material sample are r0 = 0.004 m and h0 =
0.044 m with the relative permittivity of εr = 2.5 . The dimensions of
the cylindrical waveguide are: a = 0.0762 m and c = 0.15458 m. The
operating frequency is 2.45 GHz.

and (34) are sparse and the computation time can be saved greatly.
In spite of this advantage for the mode-matching method, it is not a
very general technique because it can not be used to solve the prob-
lem involving material samples with arbitrary shapes or heterogeneous
compositions.

5. CONCLUSIONS

In this paper, the mode-matching method is applied to the case of the
homogeneous material sample with a simple geometry and it is found
that the mode-matching method can save a great deal of computation
time when compared with the integral equation method. This can
be attributed to the use of the well-defined eigenmodes and sparse
resultant matrices. Numerical results obtained agree well with that of
the integral equation method.
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