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1. INTRODUCTION

During the last ten years, special attention has been focused on elec-
tromagnetic chirality and its potential application in the design of new
devices and components. The reflection and transmission processes
for semi-infinite chiral media and for infinite chiral slabs have been
analyzed by Bassari, Papas, and Engheta [1]. The theory of electro-
magnetic wave propagation in cylindrical waveguides containing chiral
materials, termed chirowaveguides, has been presented and discussed
by Pelet and Engheta [2, 3]. Open chirowaveguides, another class of
waveguiding structures with chiral material, have been the subject of
studies of several researchers [4–6]. Mariotte, Pelet and Engheta pre-
sented an excellent review of guided waves [7], and some canonical
problems whose solution may eventually result in useful chiral devices
were reviewed by Cory [8]. In 1997, Lacava and Lumini proposed an
alternative formulation for guided electromagnetic fields in grounded
chiral slabs [9]. More recently, the dispersion characteristics of funda-
mental modes of planar chiral lines have been studied by Plaza, Mesa
and Horno [10].

The use of chiral media in microstrip antennas has also been dis-
cussed. Effects of chiral admittance in the radiation pattern and in the
surface-wave power excited by chirostrip line antennas were studied
and reported in [11]. The electromagnetic fields radiated by chirostrip
printed dipoles were also analyzed by many authors (e.g., [12–16], just
to mention a few). Specifically, the possibility of rotating the radiation
patterns was presented by Pelet and Engheta [17]. The current distri-
bution, input impedance, mutual coupling, bandwidth, and efficiency
of cylindrical chirostrip antennas were investigated in [15, 18]. On the
other hand, works on the analysis of microstrip patch antennas and
infinite arrays on chiral substrate have been carried out by Pozar [19]
and by Toscano and Legni [20]. In spite of numerous works published
on chirostrip structure [21–23], there is not enough information about
the numerical calculation of near electromagnetic field distribution in
chirostrip antennas.

Using a full-wave spectral-domain analysis method, this paper
presents a dynamic model to calculate the near electromagnetic fields
excited by a short dipole printed on a grounded chiral slab. This means
that the fields in the space domain are obtained through double inte-
grals in the Fourier domain. As the antenna is printed on the planar
interface that separates the chiral substrate from the free space region,
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the calculations of the electromagnetic fields involve Sommerfeld type
integrals. If the observation point is far from the interface, these in-
tegrals include exponentially decaying terms in the integrand which
facilitate convergence. On the other hand, if the observation point is
on the interface, these integrals converge very slowly. Consequently,
special considerations are required in this case. First of all, we carry
out a transformation from rectangular into polar coordinates in the
kx − ky spectral plane using the following formulas: kx = β cos(α)
and ky = β sin(α). Then, we do another rectangular to polar trans-
formation, this time in the x-y space domain: x = ρ cos(φ) and
y = ρ sin(φ). This procedure allows, in general, to solve analytically
the integrals in α . The integrals in β , however, must be evaluated
numerically. To exemplify the procedure, the calculation of the x-
component of the electric field in the chiral substrate and in the free
space region is discussed in detail.

Using this approach, the effects of chirality on near electromagnetic
field distributions are analyzed. It has been observed that the chirality
causes a rotation in the near-field patterns. This phenomenon has been
reported only for the far field region [17]. As expected, our calculation
confirms that the behavior of the magnetic field at the chirostrip an-
tenna interfaces is different from that usually observed in microstrip
antennas.

2. THEORY

Fig. 1 shows the geometry of the problem. A homogeneous isotropic
linear chiral medium, having thickness d, permittivity εc, permeabil-
ity µ0 (non-magnetic substrate), and chiral admittance ξc, lies on an
infinite perfectly conducting plate located on the x-y plane of a rect-
angular coordinate system. The planar interface z = d separates the
chiral substrate (0 < z < d) from the free space region (z > d, per-
mittivity ε0 and permeability µ0). For a lossless chiral substrate, the
parameters εc and ξc are real quantities. The x-directed short dipole
is printed on the planar interface at the position x = 0, y = 0 , and
z = d . As the chiral medium is isotropic, the choice of the dipole
direction does not pose any restriction on the present discussion.

The theory used in this work treats the structure as a boundary
value problem where the short dipole current is the virtual source of
the electromagnetic fields. In our approach, the wave equations in the
chiral layer and in the free-space region are solved in the Fourier do-
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Figure 1. X-directed short dipole printed on a grounded chiral slab.

main. This technique effectively removes the singularity of the spatial
Green functions and allows considerable simplification in the method of
moment calculations [24]. After that, the boundary conditions for the
electromagnetic fields are applied on the interfaces z = 0 and z = d ,
resulting in a set of six equations with six unknowns. The spectral
fields at any point of region z ≥ 0 are determined by solving this set
of equations. Finally, the electromagnetic fields in the space domain
are obtained through the application of the inverse Fourier transform.

3. ELECTROMAGNETIC FIELDS IN THE CHIRAL
SUBSTRATE

In this section, expressions for electromagnetic fields inside the chiral
substrate are derived. For time-harmonic variations, assuming time
dependence of the form eiωt, Maxwell’s equations for source-free media
are given by

∇× �E(x, y, z) = − iω�B(x, y, z) (1)

∇× �H(x, y, z) = iω �D(x, y, z) (2)

∇ · �D(x, y, z) = 0 (3)

∇ · �B(x, y, z) = 0. (4)
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Using the Post-Jaggard time-harmonic constitutive relations [25],

�D(x, y, z) = εc
�E(x, y, z) − iξc

�B(x, y, z) (5)
�B(x, y, z) =µ0

�H(x, y, z) + iµ0ξc
�E(x, y, z) (6)

the wave equation for the electric field inside the chiral substrate can
be written as

∇2�E(x, y, z) + 2p∇× �E(x, y, z) + k2
c
�E(x, y, z) = 0 (7)

where k2
c = ω2µ0εc and p = ωµ0ξc.

As the geometry shown in Fig. 1 is unbounded in the x and y
directions, we use in our calculations the expression

�E(kx, ky, z) =
∫ +∞∫

−∞

�E(x, y, z)ei(kxx+kyy)dxdy (8)

for the double Fourier transform of the electric field �E(x, y, z) .
If we Fourier transform the wave equation (7) and the solutions for

the transformed electric field components are expressed in the form

Eη(kx, ky, z) = eη(kx, ky)eiγz (9)

where eη(kx, ky) are functions to be determined (η = x, y or z) , the
following biquadratic equation can be obtained

γ4 − 2γ2(k2
c + 2p2 − u2) + k4

c + u4 − 2k2
cu

2 − 4p2u2 = 0 (10)

where u2 = k2
x + k2

y .
Solving this equation, four different propagation constants are de-

termined:

γ1 =
√

k2
+ − u2 (11)

γ2 =
√

k2
− − u2 (12)

γ3 = − γ1 (13)
γ4 = − γ2 (14)
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where k+ = q + p, k− = q − p and q = (k2
c + p2)1/2 . According to

[17], k+ and k− are the wavenumbers of the right- and left-circulary
polarized waves propagating in an unbounded chiral medium.

Considering the solutions (11)–(14), we can write the expressions for
the transformed electric field components inside the chiral substrate in
the following way

Eη(kx, ky, z) =
4∑

τ=1

eητ (kx, ky)eiγτ z. (15)

Using a similar procedure, the components of magnetic field are given
by

Hη(kx, ky, z) =
4∑

τ=1

hητ (kx, ky)eiγτ z. (16)

At this point, we have twenty four unknowns: the functions eητ (kx, ky)
and hητ (kx, ky) with τ = 1, 2, 3 or 4 and η = x, y or z.

The expressions for the electromagnetic fields in the space domain
are obtained through the inverse Fourier transform of �E(kx, ky, z) and
�H(kx, ky, z). For the τ -th solution of γ and the η-th component of
the electric field, we have

Eητ (x, y, z) =
1

4π2

∫ +∞∫

−∞

eητ (kx, ky)e−i(kxx+kyy−γτ z)dkxdky. (17)

Introducing the expressions for the inverse Fourier transform of
�E(kx, ky, z) and �H(kx, ky, z) in the Maxwell’s equations (1) and (2),
we can write exτ (kx, ky), eyτ (kx, ky), hxτ (kx, ky), hyτ (kx, ky) , and
hzτ (kx, ky) as functions of ezτ (kx, ky) :

exτ (kx, ky) =
1
u2

[γτkx + i(−1)τkτky] ezτ (kx, ky) (18)

eyτ (kx, ky) =
1
u2

[
i(−1)τ+1kτkx + γτky

]
ezτ (kx, ky) (19)

hxτ (kx, ky) =
q

ωµ0u2

[
i(−1)τ+1γτkx + kτky

]
ezτ (kx, ky) (20)

hyτ (kx, ky) =
q

ωµ0u2

[
−kτkx + i(−1)τ+1γτky

]
ezτ (kx, ky) (21)

hzτ (kx, ky) = (−1)τ+1 iq

ωµ0
ezτ (kx, ky) (22)
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where k1 = k3 = k+ and k2 = k4 = k−. With the procedure just
described, we have drastically reduced the number of unknowns in the
chiral substrate. There are now only four unknowns: the functions
ez1(kx, ky), ez2(kx, ky), ez3(kx, ky) and ez4(kx, ky).

4. ELECTROMAGNETIC FIELDS IN THE FREE SPACE

The wave equation for the electric field in the free space (z > d) can
be obtained from equation (7) if the particular conditions ξc = 0 and
εc = ε0 are observed. After the substitution of these values, we have

∇2�E0(x, y, z) + k2
0
�E0(x, y, z) = 0 (23)

where k2
0 = ω2µ0ε0.

Using a procedure similar to that presented in the previous section,
the expressions for the transformed electromagnetic field components
in the free space are given by

Eη0(kx, ky, z) = eη0(kx, ky)e−ikz0z (24)

Hη0(kx, ky, z) =hη0(kx, ky)e−ikz0z (25)

where kz0 = (k2
0 − u2)1/2. We have eliminated the wave propagating

toward negative z because this region is unbounded for z > d .
Consequently, the functions ex0(kx, ky), ey0(kx, ky), hx0(kx, ky) ,

and hy0(kx, ky) can be written as functions of ez0(kx, ky) , as follows

ex0(kx, ky) = − u−2 [kxkz0ez0(kx, ky) + ωµ0kyhz0(kx, ky)] (26)

ey0(kx, ky) = − u−2 [kykz0ez0(kx, ky) − ωµ0kxhz0(kx, ky)] (27)

hx0(kx, ky) = − u−2 [−ωε0kyez0(kx, ky) + kxkz0hz0(kx, ky)] (28)

hy0(kx, ky) = − u−2 [ωε0kxez0(kx, ky) + kykz0hz0(kx, ky)] . (29)

So, in the free space we have only two unknowns ez0(kx, ky) and
hz0(kx, ky).

In summary, the total number of unknowns in this formulation is six.
These unknowns will be found by applying the boundary conditions for
the electromagnetic fields on the interfaces of the chirostrip structure.
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5. BOUNDARY CONDITIONS

For the geometry presented in Fig. 1, the necessary and sufficient
boundary conditions are those that require the tangential components
of the electric field to vanish on the ground plane (z = 0), the continu-
ity of the tangential components of the electric field on the chiral-free
space interface z = d, and the discontinuity of the tangential compo-
nents of the magnetic field on the same interface due to the printed
dipole. After the application of these conditions, we can write the
following system of equation involving ezτ (kx, ky), ez0(kx, ky), and
hz0(kx, ky) :

4∑
τ=1

[γτezτ (kx, ky)] = 0 (30)

4∑
τ=1

[(−1)τkτezτ (kx, ky)] = 0 (31)

4∑
τ=1

[
γτe

iγτ dezτ (kx, ky)
]

+ kz0e
−ikz0dez0(kx, ky) = 0 (32)

4∑
τ=1

[
(−1)τkτe

iγτ dezτ (kx, ky)
]
− iωµ0e

−ikz0dhz0(kx, ky) = 0 (33)

4∑
τ=1

[
(−1)τ+1qγτe

iγτ dezτ (kx, ky)
]
− ikz0ωµ0e

−ikz0dhz0(kx, ky)

= −iIωµ0ky (34)
4∑

τ=1

[
qkτe

iγτ dezτ (kx, ky)
]
− k2

0e
−ikz0dez0(kx, ky) = −Iωµ0kx (35)

where I, a constant expressed in ampere · meters, is the Fourier
transform of the current on the short dipole.

Solving the system (30)–(35), the functions ezτ (kx, ky), ez0(kx, ky) ,
and hz0(kx, ky) are finally determined. Inserting these functions into
equations (18)–(22) and (26)–(29), and then into equations (15), (16),
(24), and (25), we obtain the expressions for the components of the
transformed electromagnetic fields inside and outside the chiral sub-
strate. The expressions for the x-component of the transformed elec-
tric field are presented below and those for the other components are
listed in the Appendix.



Near fields in chirostrip dipole antennas 69

Inside the chiral substrate (0 < z < d), we have:

Ex(kx, ky, z) =
ωIµ0

2u2∆(u2)

[
M (c)

xx (z, u2)k2
x

+ M (c)
xy (z, u2)kxky + M (c)

yy (z, u2)k2
y

]
(36)

where

M (c)
xx (z, u2) = [cos(γ1z) − cos(γ2z)]Ax

− iz
[
k−γ2

1 sinc(γ1z) + k+γ2
2 sinc(γ2z)

]
Bx (37)

M (c)
xy (z, u2) = (Ay + ik2

cBx) [cos(γ1z) − cos(γ2z)]

+ z
[
k+Ax − ik−γ2

1By

]
sinc(γ1z)

+ z
[
k−Ax − ik+γ2

2By

]
sinc(γ2z) (38)

M (c)
yy (z, u2) = ik2

c [cos(γ1z) − cos(γ2z)]By

+ z [k+ sinc(γ1z) + k− sinc(γ2z)]Ay (39)
Ax = k2

z0k
2
c [cos(γ1d) − cos(γ2d)]

+ iqkz0d
[
k−γ2

1 sinc(γ1d) − k+γ2
2 sinc(γ2d)

]
(40)

Ay = − iqkz0k
2
c

[
cos(γ1d) + cos(γ2d)

]

+ k2
0d

[
k−γ2

1 sinc(γ1d) + k+γ2
2 sinc(γ2d)

]
(41)

Bx = qkz0 [cos(γ1d) + cos(γ2d)]
+ ik2

z0d [k+ sinc(γ1d) + k− sinc(γ2d)] (42)
By = ik2

0 [− cos(γ1d) + cos(γ2d)]
+ qkz0d [k+ sinc(γ1d) − k− sinc(γ2d)] (43)

∆(u2) = k2
ckz0(q2 + k2

0) cos(γ1d) cos(γ2d)
+ iqd(k2

0γ
2
2k+ + k2

z0k
2
ck−) cos(γ1d) sinc(γ2d)

+ iqd(k2
z0k

2
ck+ + k2

0γ
2
1k−) sinc(γ1d) cos(γ2d)

− 0.5d2kz0(k2
+γ2

2 + k2
−γ2

1)(q2 + k2
0) sinc(γ1d) sinc(γ2d)

+ k2
ckz0(q2 − k2

0) (44)
sinc(x) = sin(x)/x (45)

In the free space (z > d), we have:

Ex0(kx, ky, z) =
ωIµ0e

ikz0(d−z)

u2∆(u2)

[
M (0)

xx (u2)k2
x

+ M (0)
xy (u2)kxky + M (0)

yy (u2)k2
y

]
(46)
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where

M (0)
xx (u2) = k2

ck
2
z0 [1 − cos(γ1d) cos(γ2d)]

− iqdkz0

[
k+γ2

2 cos(γ1d) sinc(γ2d)

+ k−γ2
1 cos(γ2d) sinc(γ1d)

]
+ 0.5d2k2

z0(k
2
+γ2

2 + k2
−γ2

1) sinc(γ1d) sinc(γ2d) (47)

M (0)
xy (u2) = 4ipd2q2u2kz0 sinc(γ1d) sinc(γ2d) (48)

M (0)
yy (u2) = k2

ck
2
0 [1 − cos(γ1d) cos(γ2d)]

− iqdkz0k
2
c [k− cos(γ1d) sinc(γ2d)

+ k+ cos(γ2d) sinc(γ1d)]
+ 0.5d2k2

0(k
2
+γ2

2 + k2
−γ2

1) sinc(γ1d) sinc(γ2d) (49)

6. COMPUTATION OF NEAR ELECTROMAGNETIC
FIELDS

Since the electromagnetic fields in the space domain are obtained ap-
plying the inverse Fourier transform to the expressions of the trans-
formed fields, double integrals in the spectral variables kx and ky

must be calculated. To exemplify this procedure, we will discuss here
in detail only the calculation of the electric field component Ex(x, y, z)
in the chiral substrate. This component is given by:

Ex(x, y, z) =
ωIµ0

8π2

+∞∫

−∞

∫
1

u2∆(u2)

[
M (c)

xx (z, u2)k2
x + M (c)

xy (z, u2)kxky

+ M (c)
yy (z, u2)k2

y

]
e−i(kxx+kyy)dkxdky (50)

In order to evaluate the double integral in (50), first of all we carry
out a transformation from rectangular into polar coordinates in the
spectral domain using the following formulas: kx = β cos(α) and ky =
β sin(α). Then, we do another rectangular-to-polar transformation,
this time in the x-y plane: x = ρ cos(φ) and y = ρ sin(φ). This
means that we move from rectangular to cylindrical coordinates in the
space domain. Equation (50) can be now rewritten as
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Ex(ρ, φ, z)

=
ωIµ0

8π2

+∞∫

0

β

∆(β2)

{[
M (c)

xx (z, β2) cos2(φ) + M (c)
yy (z, β2) sin2(φ)

+ M (c)
xy (z, β2) cos(φ) sin(φ)

] 2π∫

0

e−iβρ cos(α)dα +
[
M (c)

yy (z, β2) cos(2φ)

− M (c)
xx (z, β2) cos(2φ) − M (c)

xy (z, β2) sin(2φ)
] 2π∫

0

sin2(α)e−iβρ cos(α)dα

+
[
M (c)

yy (z, β2) sin(2φ) − M (c)
xx (z, β2) sin(2φ)

+ M (c)
xy (z, β2) cos(2φ)

] 2π∫

0

cos(α) sin(α)e−iβρ cos(α)dα

}
dβ (51)

Considering the following identities [26]:

2π∫

0

e−iβρ cos(ξ)dξ = 2πJ0(βρ) (52)

2π∫

0

sin2(ξ)e−iβρ cos(ξ)dξ =
2π

βρ
J1(βρ) (53)

2π∫

0

cos(ξ) sin(ξ)e−iβρ cos(ξ)dξ = 0 (54)

where J0(z) and J1(z) are Bessel functions of the first kind, the ex-
pression for the Ex(ρ, φ, z) component is given by

Ex(ρ, φ, z) =

+∞∫

0

F (β)dβ (55)

where
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F (β) =
ωIµ0

4π

β

∆(β2)

{[
M (c)

xx (z, β2) cos2(φ) + M (c)
yy (z, β2) sin2(φ)

+ M (c)
xy (z, β2) cos(φ) sin(φ)

]
J0(βρ) +

[
M (c)

yy (z, β2) cos(2φ)

− M (c)
xx (z, β2) cos(2φ) − M (c)

xy (z, β2) sin(2φ)
] J1(βρ)

βρ

}
(56)

is a complex function to be integrated. Note that we were able to solve
analytically only the integral in α. The integral in β will be evaluated
numerically.

To better understand the behavior of the complex function F (β),
we have drawn in Fig. 2 this function versus β for f = 2.0 GHz,
I = 1.0 milliampere.meter, εc = 2.0ε0, d = 32.0 mm, ξc = 1.0 mS,
ρ = 3.0d, φ = 90◦, and z = 0.8d. An analysis of the complex function
F (β) shows that its real part (continuous line in Fig. 2) is different from
zero only between 0 and k0 (k0 = 41.917 rad/m) and has a delta Dirac
behavior at the pole position (βp = 54.263 rad/m). The imaginary
part of this function (dashed line in Fig. 2) is discontinuous at the pole
position, has its first derivative also discontinuous at k0, and shows
an oscillatory behavior when β → +∞. We note that, as shown in [9],
the pole is located between k0 and k+.

The computation of the integral of the complex function F (β) is
divided into 5 parts:

+∞∫

0

F (β)dβ =

k0∫

0

F (β)dβ +

βp−δ∫

k0

F (β)dβ +

βp+δ∫

βp−δ

F (β)dβ

+

b∫

βp+δ

F (β)dβ +

+∞∫

b

F (β)dβ (57)

where βp is the pole position and b is the first zero greater than k+

of the imaginary part. We have only considered the condition of one
pole. Increasing the chiral substrate thickness and/or the operation
frequency, the complex function F (β) can exhibit more than one pole.
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Figure 2. Complex function F (β) that must be integrated to obtain
the electric field component Ex(ρ, φ, z) in the chiral substrate, com-
puted for f = 2.0 GHz, I = 1.0 milliampere.meter, εc = 2.0ε0, d =
32.0 mm, ξc = 1.0 mS, ρ = 3.0d, φ = 90◦ , and z = 0.8d .

In this case, additional terms must be added to the expression (57).

• Calculation of
k0∫
0

F (β)dβ

In this interval, the function to be integrated has both the real and
the imaginary parts. The integrals are calculated numerically using
the DQDAGS subroutine available in the IMLS mathematical package
version 10. A trade-off between the computation time and the precision
has been reached using a relative error equal to 10−5.

• Calculation of
βp−δ∫
k0

F (β)dβ

In this interval, the complex function to be integrated has only the
imaginary part and it is integrated using the DQDAGS subroutine.
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• Calculation of
βp+δ∫
βp−δ

F (β)dβ

In this interval the complex function to be integrated has both the
real and the imaginary parts. If the position of the pole is calculated
with high precision, and if δ is made small, then the integral of the
imaginary part is zero because the integral before the pole is equal and
opposite to the integral after the pole. In our computation, we have
calculated the pole position with an absolute precision of 10−12 rad/m
and δ has been fixed at 10−4 rad/m .

The integral of the real part around the pole has been calculated
analytically. To perform this calculation, we first write the function to
be integrated in the form:

F (β) =
f(β)
T (β)

(58)

where f(β) is the non-singular portion of the function F (β) and
T (βp) = 0. If small losses are introduced, the pole moves off the real
β axis to zp = βp + iγp. Then, using the Taylor series expansion in
the vicinity of the pole zp, we can write T (z) ∼= T ′(zp)(z − zp) where

T ′(zp) = dT (z)
dz

∣∣∣∣
z=zp

. In the vicinity of the pole the function f(z) can

also be approximated by f(zp) and the complex function to be inte-
grated can be rewritten as:

F (z) ∼= f(zp)
T ′(zp) · (z − zp)

. (59)

As the integral will be performed along the real axis, we make z = β
in (59) and obtain

F (β) ∼= f(βp + iγp)
T ′(βp + iγp) · (β − βp − iγp)

. (60)

Consequently, an analytical solution for the integral is given by

βp+δ∫

βp−δ

F (β)dβ = − f(βp + iγp)
T ′(βp + iγp)

ln




i +
δ

γp

i − δ

γp


 . (61)
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Furthermore, if we use the following identity

tg−1(z) =
i

2
ln

(
i + z

i − z

)
(62)

equation (61) can be expressed as:

βp+δ∫

βp−δ

F (β)dβ = 2i tg−1

(
δ

γp

)
f(βp + iγp)
T ′(βp + iγp)

. (63)

For the lossless case (γp = 0), we obtain:

βp+δ∫

βp−δ

F (β)dβ = iπ
f(βp)
T ′(βp)

. (64)

• Calculation of
b∫

βp+δ

F (β)dβ

In this interval, the function to be integrated is imaginary and the
integral is calculated using the DQDAGS subroutine.

• Calculation of
+∞∫
b

F (β)dβ

In this interval, the function to be integrated also has only the imagi-
nary part. Using the method introduced in [27], we calculate through
the DQDAGS subroutine the integrals

Ik =

xk∫

b

F (β)dβ

where xk is the k-th zero after b. Then we form the following se-
quences

M1 = I1

M2 =
I1 + I2

2
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M3 =
I1 + 2I2 + I3

4
...

Mk =

k∑
m=1

(
k − 1
m − 1

)
Im

2k−1
. (65)

According to [27], the required integral is given by:

+∞∫

b

F (β)dβ = lim
k→+∞

Mk. (66)

In our numerical calculations, we have stopped the sequence when the
relative difference between two consecutive terms was less than 10−6.

6.1 Asymptotic Expression for the Imaginary Part of the
Function to be Integrated

It can be shown that the imaginary part of the function to be inte-
grated (equation (56)), when β >> k+, is given by

iωIµ0

π

√
2
πρ

1
[p2 + 2k2

0(εr + 1)]
β3/2 cos2(φ) cos(βρ − 0.25π)e+β(z−d).

(67)
When z is far from the interface z = d, the expression (67) shows
that the oscillatory function F (β) decreases swiftly when β → +∞
and the integral converges rapidly. This situation can be observed
in Fig. 3 where we have plotted the imaginary part of F (β) versus
β for x = 1.0d, y = 2.0d, z = 0.8d, and ξc = 1.0 mS . It is also
worth noting that the oscillatory function in the imaginary part of
F (β) has a period given by T = 2π/ρ. This property is shown in Fig.
4 for ξc = 1.0 mS, y = 2.0d, z = 0.9d, x = 1.0d (continuous line),
and x = 5.0d (dashed line). The period for the continuous line is
87.8 rad/m while for the dashed line is 36.5 rad/m .

However, when z is close to the interface the convergence is very
slow. In the limiting case when z = d the function diverges and this
characteristic is presented in Fig. 5 for x = 1.0d, y = 2.0d, z = d, and
ξc = 1.0 mS . The method introduced in [27] that uses the sequences



Near fields in chirostrip dipole antennas 77

(65) allow to perform the integral also when z = d and the function
F (β) diverges.

7. NUMERICAL RESULTS

Using the formulation described above, effects of chirality on near elec-
tromagnetic fields were analyzed in detail. We have chosen chiral ad-
mittance values normally found in the literature [8, 28] and, for brevity,
only the results for the chirostrip structure with εc = 2.0ε0, d = 32.0
mm, I = 1.0 milliampere.meter, and f = 2.0 GHz are discussed below.

In Figs. 6, 7, and 8, we have drawn the polar plot of the electric field
components |Ex|, |Ey| and |Ez|, computed for z = 0.5d, ρ = 2.0d
and two different values of chirality: ξc = 1.0 mS (continuous line) and
0.0mS (achiral substrate, dashed line). We note that, when the chiral-
ity is present, there is no symmetry with respect to the x-z plane con-
taining the short dipole because the chirality causes a rotation in the
near field structure. Another way to visualize this effect is presented in
Fig. 9, where we have plotted the magnitude of Ez component versus
x/d with y = 2.0d and z = 0.7d. Clearly, the rotation caused by the
chirality modifies the symmetry of the field distribution with respect
to the x = 0 plane. This phenomenon has been previously reported
only for the far field region [17].

In Fig. 10, we have drawn the magnitude of the z-component of
the magnetic field as a function of z/d with x = 1.0d, y = 2.0d,
and for two different values of chirality: ξc = 1.0 mS (continuous line)
and 0.0mS (achiral substrate, dashed line). We note that, when the
chirality is present, the magnetic field component Hz is not zero on the
perfectly conducting surface z = 0 and it is also discontinuous on the
interface z = d , in spite of the magnetic permeability being the same
on the two sides of the interface. This is an intrinsic characteristic of
chiral media. Of course the z-component of the magnetic flux density
vector �B is zero at the interface z = 0 and is continuous at the
interface z = d even when the chirality is different from zero, as it can
be seen in Fig. 11.

The discontinuity in the z-component of the magnetic field at the
interface z = d is further analyzed in Fig. 12, where we show the
plots of Hz0 and Hz . The continuous line is the z-component of the
magnetic field in the chiral substrate and the dashed line is the same
component in the free space region. The parameters are ξc = 1.0 mS
and ρ = 2.0d. In this figure, we also observe that the Hz component
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Figure 3. Imaginary part of the complex function F (β) that must be
integrated to obtain the electric field component Ex(x, y, z) in the chi-
ral substrate, computed for f = 2.0 GHz, I = 1.0 milliampere.meter,
εc = 2.0ε0, d = 32.0 mm, ξc = 1.0 mS, x = 1.0d, y = 2.0d , and
z = 0.8d .
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Figure 4. Imaginary part of the complex function F (β) that must be
integrated to obtain the electric field component Ex(x, y, z) in the chi-
ral substrate, computed for f = 2.0 GHz, I = 1.0 milliampere.meter,
εc = 2.0ε0, d = 32.0 mm, ξc = 1.0 mS, y = 2.0d, z = 0.9d , and two
different values of x : 1.0d (continuous line) and 5.0d (dashed line).
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Figure 5. Imaginary part of the complex function F (β) that must
be integrated to obtain the electric field component Ex(x, y, z) at
the planar interface z = 1.0d , computed for f = 2.0 GHz, I =
1.0 milliampere.meter, εc = 2.0ε0, d = 32.0 mm, ξc = 1.0 mS, x =
1.0d , and y = 2.0d .

rotates by an angle different than that of Hz0 . The difference between
these two angles in this particular case is 6 degrees. This phenomenon
has been verified by the authors in [23].

8. CONCLUSIONS

In this paper, a dynamic model to calculate the near electromagnetic
fields excited by a short dipole printed on a grounded chiral slab is
presented. As the calculation is carried out in the Fourier domain,
we obtain the spectral electromagnetic fields in compact and closed
forms where only sine and cosine functions are present. This is a very
efficient approach for the numerical calculation of the electromagnetic
fields in the space domain through double integrals in the spectral
plane. Effects of chirality on near field distributions were presented
and discussed. As a result of our calculation we clearly noticed that
the chirality can cause a rotation in the near field structure and, conse-
quently, in the far field pattern. Then, we can state that, at the inter-
face between a perfectly conducting surface and a chiral substrate, the
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Figure 6. Polar plot of the electric field component |Ex| , expressed in
volt/m, computed for f = 2.0 GHz , I = 1.0 milliampere.meter, εc =
2.0ε0, d = 32.0 mm, z = 0.5d, ρ = 2.0d , and two different values of
chirality: ξc = 1.0 mS (continuous line) and 0.0 mS (achiral substrate,
dashed line).
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Figure 7. Polar plot of the electric field component |Ey| , expressed in
volt/m, computed for f = 2.0 GHz , I = 1.0 milliampere.meter, εc =
2.0ε0, d = 32.0 mm, z = 0.5d, ρ = 2.0d , and two different values of
chirality: ξc = 1.0 mS (continuous line) and 0.0 mS (achiral substrate,
dashed line).
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Figure 8. Polar plot of the electric field component |Ez| , expressed in
volt/m, computed for f = 2.0 GHz , I = 1.0 milliampere.meter, εc =
2.0ε0, d = 32.0 mm, z = 0.5d, ρ = 2.0d , and two different values of
chirality: ξc = 1.0 mS (continuous line) and 0.0 mS (achiral substrate,
dashed line).
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Figure 9. Amplitude (absolute value) of the electric field component
Ez versus x/d , expressed in volt/m, computed for f = 2.0 GHz , I =
1.0 milliampere.meter , εc = 2.0ε0, d = 32.0 mm, y = 2.0d, z = 0.7d ,
and two different values of chirality: ξc = 1.0 mS (continuous line)
and 0.0 mS (achiral substrate, dashed line).
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Figure 10. Amplitude (absolute value) of the magnetic field compo-
nent Hz versus z/d, expressed in m.A/m, computed for f = 2.0 GHz ,
I = 1.0 milliampere.meter, εc = 2.0ε0, d = 32.0 mm, x = 1.0d, y =
2.0d , and two different values of chirality: ξc = 1.0 mS (continuous
line) and 0.0 mS (achiral substrate, dashed line).

magnetic field component normal to this surface is not null. Moreover,
at the interface between the chiral substrate and the free space, the
magnetic field component normal to this surface is not continuous even
when the magnetic permeability is the same in the two media. The nu-
merical technique developed in this work has potential applications in
microwave and millimeter wave circuit components, printed antennas
and integrated optics.

9. APPENDIX

9.1 Transformed Electromagnetic Fields Inside the Chiral
Substrate

The expressions for the components of the transformed electromag-
netic fields inside the chiral substrate (0 < z < d) are shown below.
We remember that the expression of Ex(kx, ky, z) has already been
given in the body of this paper.
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Figure 11. Amplitude (absolute value) of the magnetic flux den-
sity component Bz versus z/d , computed for f = 2.0 GHz , I =
1.0 milliampere.meter , εc = 2.0ε0 , d = 32.0 mm , x = 1.0d , y =
2.0d , and two different values of chirality: ξc = 1.0 mS (continu-
ous line) and 0.0 mS (achiral substrate, dashed line). In this figure
(|Bz|/µ0) is expressed in m.A/m.
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Figure 12. Polar plot of the magnetic field component Hz , expressed
in m.A/m, at the interface between the chiral substrate and free space
region, computed for f = 2.0 GHz, I = 1.0 milliampere.meter, εc =
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Ey(kx, ky, z) =
ωIµ0

2u2∆(u2)

[
N (c)

xx (z, u2)k2
x

+ N (c)
xy (z, u2)kxky + N (c)

yy (z, u2)k2
y

]
(68)

where

N (c)
xx (z, u2) = − ik2

c [cos(γ1z) − cos(γ2z)]Bx

− z [k+ sinc(γ1z) + k− sinc(γ2z)]Ax (69)

N (c)
xy (z, u2) = (Ax − ik2

cBy) [cos(γ1z) − cos(γ2z)]

− z
[
k+Ay + ik−γ2

1Bx

]
sinc(γ1z)

− z
[
k−Ay + ik+γ2

2Bx

]
sinc(γ2z) (70)

N (c)
yy (z, u2) = [cos(γ1z) − cos(γ2z)]Ay

− iz
[
k−γ2

1 sinc(γ1z) + k+γ2
2 sinc(γ2z)

]
By (71)

Ez(kx, ky, z) =
ωIµ0

2∆(u2)

[
M (c)

x (z, u2)kx + M (c)
y (z, u2)ky

]
(72)

where

M (c)
x (z, u2) = − [k− cos(γ1z) + k+ cos(γ2z)]Bx

+ iz [ sinc(γ1z) − sinc(γ2z)]Ax (73)

M (c)
y (z, u2) = − [k− cos(γ1z) + k+ cos(γ2z)]By

+ iz [ sinc(γ1z) − sinc(γ2z)]Ay (74)

Hx(kx, ky, z) =
−qI

2u2∆(u2)

[
S(c)

xx (z, u2)k2
x

+ S(c)
xy (z, u2)kxky + S(c)

yy (z, u2)k2
y

]
(75)

where

S(c)
xx (z, u2) = − i [cos(γ1z) + cos(γ2z)]Ax

− z
[
k−γ2

1 sinc(γ1z) − k+γ2
2 sinc(γ2z)

]
Bx (76)

S(c)
xy (z, u2) = (−iAy + k2

cBx) [cos(γ1z) + cos(γ2z)]

− z(ik+Ax + k−γ2
1By) sinc(γ1z)
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+ z(ik−Ax + k+γ2
2By) sinc(γ2z) (77)

S(c)
yy (z, u2) = k2

c [cos(γ1z) + cos(γ2z)]By

− iz [k+ sinc(γ1z) − k− sinc(γ2z)]Ay (78)

Hy(kx, ky, z) =
−qI

2u2∆(u2)

[
T (c)

xx (z, u2)k2
x

+ T (c)
xy (z, u2)kxky + T (c)

yy (z, u2)k2
y

]
(79)

where

T (c)
xx (z, u2) = − k2

c [cos(γ1z) + cos(γ2z)]Bx

+ iz [k+ sinc(γ1z) − k− sinc(γ2z)]Ax (80)

T (c)
xy (z, u2) = (−iAx − k2

cBy) [cos(γ1z) + cos(γ2z)]

+ z(ik+Ay − k−γ2
1Bx) sinc(γ1z)

− z(ik−Ay − k+γ2
2Bx) sinc(γ2z) (81)

T (c)
yy (z, u2) = − i [cos(γ1z) + cos(γ2z)]Ay

− z
[
k−γ2

1 sinc(γ1z) − k+γ2
2 sinc(γ2z)

]
By (82)

Hz(kx, ky, z) =
−qI

2∆(u2)

[
S(c)

x (z, u2)kx + S(c)
y (z, u2)ky

]
(83)

where

S(c)
x (z, u2) = i [k− cos(γ1z) − k+ cos(γ2z)]Bx

+ z [ sinc(γ1z) + sinc(γ2z)]Ax (84)

S(c)
y (z, u2) = i [k− cos(γ1z) − k+ cos(γ2z)]By

+ z [ sinc(γ1z) + sinc(γ2z)]Ay (85)

9.2 Transformed Electromagnetic Fields in the Free Space
Region

The expressions for the components of the transformed electromag-
netic fields in the free space region (z > d) are shown below. We
remember that the expression of Ex0(kx, ky, z) has already been given
in the body of this paper.

Ey0(kx, ky, z) =
ωIµ0e

ikz0(d−z)

∆(u2)

[
N (0)

xx (u2)(k2
x − k2

y) + N (0)
xy (u2)kxky

]

(86)
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where

N (0)
xx (u2) = − 2ipd2q2kz0 sinc(γ1d) sinc(γ2d) (87)

N (0)
xy (u2) = − k2

c [1 − cos(γ1d) cos(γ2d)]
+ iqdkz0 [k+ cos(γ1d) sinc(γ2d)
+ k− cos(γ2d) sinc(γ1d)]
− 0.5d2(k2

+γ2
2 + k2

−γ2
1) sinc(γ1d) sinc(γ2d) (88)

Ez0(kx, ky, z) =
−ωIµ0e

ikz0(d−z)

∆(u2)

[
M (0)

x (u2)kx + M (0)
y (u2)ky

]
(89)

where

M (0)
x (u2) = k2

ckz0 [1 − cos(γ1d) cos(γ2d)]
− iqd

[
k+γ2

2 cos(γ1d) sinc(γ2d)

+ k−γ2
1 cos(γ2d) sinc(γ1d)

]
+ 0.5d2kz0(k2

+γ2
2 + k2

−γ2
1) sinc(γ1d) sinc(γ2d) (90)

M (0)
y (u2) = 2ipd2q2u2 sinc(γ1d) sinc(γ2d) (91)

Hx0(kx, ky, z) =
−iIeikz0(d−z)

u2∆(u2)

[
S(0)

xx (u2)k2
x + S(0)

xy (u2)kxky

+ S(0)
yy (u2)k2

y

]
(92)

where

S(0)
xx (u2) = − 2pd2q2u2k2

z0 sinc(γ1d) sinc(γ2d) (93)

S(0)
xy (u2) = qd(−k2

0γ
2
2k+ + k2

z0k
2
ck−) cos(γ1d) sinc(γ2d)

+ qd(−k2
0γ

2
1k− + k2

z0k
2
ck+) cos(γ2d) sinc(γ1d) (94)

S(0)
yy (u2) = 2pd2q2u2k2

0 sinc(γ1d) sinc(γ2d) (95)

Hy0(kx, ky, z) =
Ieikz0(d−z)

u2∆(u2)

[
T (0)(u2) + T (0)

xx (u2)k2
x

+ T (0)
xy (u2)kxky + T (0)

yy (u2)k2
y

]
(96)

where
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T (0)(u2) =u2
[
k2

0kz0k
2
c [1 − cos(γ1d) cos(γ2d)]

+ 0.5d2k2
0kz0(k2

+γ2
2 + k2

−γ2
1) sinc(γ1d) sinc(γ2d)

]
(97)

T (0)
xx (u2) = − iqdk2

0

[
k+γ2

2 cos(γ1d) sinc(γ2d)

+ k−γ2
1 cos(γ2d) sinc(γ1d)

]
(98)

T (0)
xy (u2) = 2ipd2q2u2(k2

0 + k2
z0) sinc(γ1d) sinc(γ2d) (99)

T (0)
yy (u2) = − iqdk2

z0k
2
c [k− cos(γ1d) sinc(γ2d)

+ k+ cos(γ2d) sinc(γ1d)] (100)

Hz0(kx, ky, z) =
−Ieikz0(d−z)

∆(u2)

[
S(0)

x (u2)kx + S(0)
y (u2)ky

]
(101)

where

S(0)
x (u2) = 2ipd2q2u2kz0 sinc(γ1d) sinc(γ2d) (102)

S(0)
y (u2) = k2

ck
2
0 [1 − cos(γ1d) cos(γ2d)]

− iqdk2
ckz0 [k− cos(γ1d) sinc(γ2d)

+ k+ cos(γ2d) sinc(γ1d)]
+ 0.5d2k2

0(k
2
+γ2

2 + k2
−γ2

1) sinc(γ1d) sinc(γ2d) (103)
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