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1. INTRODUCTION

It is well known that the electromagnetic scattering of plane and beam
waves by various composite cylindrical objects has long been studied
by many authors [1–8], and these studies have been motivated both
by interest in developing new techniques for solving scattering prob-
lems and by numerous engineering applications. For instance, many
complex practical problems require a number of composite cylinders
to model the scatter environment, improve and control the scattering
properties in diverse areas like bioelectromagnetics, microwave remote
sensing and imaging, and optical communication, et al. The geometries
of cylindrical objects treated before include dielectric or impedance
cylinders embedded into another dielectric cylinder as well as two or
N parallel conducting and dielectric cylinders. The corresponding
approaches used for dealing with these models can be the analyti-
cal separation variables technique for circular cross-section, while for
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non-separable cylinder cross-section, the numerical techniques, such as
extended boundary condition method, moment method as well as finite
element method must be adopted.

Furthermore, in the past few years some significant theoretical re-
search progresses have been achieved concerning with the electromag-
netic characteristics and potential applications of bianisotropic ma-
terials. For instance, (1) the dyadic Green’s function for source ra-
diation and wave propagation in bianisotropic media [9–13]; (2) the
guided wave features of hybrid modes in some bianisotropic waveguides
[14–20]; (3) the dispersion characteristics of multiconductor transmis-
sion lines in one- and two-layer grounded bianisotropic superstrate-
substrate [21–23], and (4) experimental investigation on the effective
constitutive parameters of uniaxial bianisotropic composites [24]. On
the other hand, the scattering characteristics of various cylindrical
bi(an)isotropic objects has also been examined by some authors, such
as the scattering of normally and obliquely incident waves by one or
multilayered bi(an)isotropic cylinders of circular or arbitrary cross sec-
tion using the separation variables technique, moment-method and
propagator matrix approach, et al., [25–32]. Also, the multiple scat-
tering from parallel bianisotropic cylinders has been treated recently
[33–35].

In this contribution, the generalized model of electromagnetic scat-
tering from a planar array of multiple eccentrical bianisotropic cylin-
ders is established and formulated using some hybrid but analytic tech-
niques. Furthermore, numerical calculation is carried out to investi-
gate the multiple scattering features of two-dimensional bianisotropic
objects of arbitrary cross section and various effects of constitutive pa-
rameters are examined. The motivation for this study is not only for
the consideration of academic importance in complex media, but also
essential for the potential engineering applications.

2. GEOMETRY OF THE PROBLEM

Fig. 1 shows the cross section of a planar array made of N paral-
lel, infinitely long, multilayered, and internal eccentrically overlapping
bianisotropic circular cylinders embedded in an unbounded isotropic
medium with permittivity εb and permeability µb.

The bianisotropic media are usually dissipative and their constitu-
tive characteristics here are assumed to be described by the following
relations in an appropriate frequency range

(
eiωt

)
:
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Figure 1. Geometry and coordinates of N (q = 1, 2, · · · , N) parallel,
M -layer composite eccentric bianisotropic circular cylinders. The sep-
aration between cylinders between q and g (g �= q, g = 1, 2, · · · , q−
1, q + 1, · · · , N) is determined by Dqg ≥

(
R

(q)
M + R

(g)
M

)
.

[
�D(q,p)(ω)
�B(q,p)(ω)

]
=





[
ε
(q)
p (ω)

] [
ξ
(q)
ep (ω)

]

[
ξ
(q)
mp(ω)

] [
µ

(q)
p (ω)

]




[

�E(q,p)(ω)
�H(q,p)(ω)

]
. (1a,b)

where
[
ε
(q)
p (ω)

]
,

[
µ

(q)
p (ω)

]
,

[
ξ
(q)
ep (ω)

]
, and

[
ξ
(q)
mp(ω)

]
are the permit-

tivity tensor, permeability tensor, and magnetoelectric cross-coupling
tensors, respectively, p = 1, 2, · · · , M (layer number), q = 1, 2, · · · ,
N (outermost cylinder number). Here, it should be emphasized that
the case of electrically large cylinders

{
k R

(q)
M � 1, k = ω

√
µbεb

}
will

not be taken into consideration. The radii of the qth composite cylin-
der are denoted by R

(q)
1 , · · · , R

(q)
M , and their respective axes are fixed

at the origins O
(q)
1 , · · · , O

(q)
M , respectively. The eccentric distances

from O
(q)
2 , · · · , O

(q)
M to O

(q)
1 are denoted by d

(q)
p1 (p = 2, · · · , M),

and the four constitutive tensors of the qth bianisotropic cylinder in the
pth layer are supposed to be described by the following gyrotropic form
in the cylindrical coordinate system O

(q)
p

(
ρ
(q)
p , ϕ

(q)
p , z

(q)
p

)(
ρ
(q)
p ≤R

(q)
p

)
,
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[
C(q)

p (ω)
]
=






C
(q,p)
1 (ω) iC

(q,p)
12 (ω) 0

−iC
(q,p)
12 (ω) C

(q,p)
1 (ω) 0

0 0 C
(q,p)
2 (ω)




, C = ε, µ, ξe, ξm.

(2)
where

[
C

(q)
p (ω)

]
is of sufficient generality and can incorporate most

practical applications. For instance, when C
(q,p)
12 (ω) = 0, (2) just

stands for the uniaxial bianisotropic media (UBM), and when[
ξ
(q)
ep,mp(ω)

]
= 0I, it become the ordinary gyroelectromagnetic media,

here I is the unit dyad. Especially, according to the symmetry theory
of the continuous group [36–38], (2) is also reasonable for describing
the constitutive features of Faraday chiral media (FCM), i.e., chiroplas-
mas and chiroferrites [39, 40]. Corresponding to the different magnetic
groups, the magnetoelectric cross-coupling tensors

[
ξ
(q)
ep,mp(ω)

]
may be

chosen to be of the following forms [36]:

1◦(C∞) :
[
ξ(q)
ep

]
=






ξ
(q,p)
e1 ξ

(q,p)
e12 0

−ξ
(q,p)
e12 ξ

(q,p)
e1 0

0 0 ξ
(q,p)
e2




 ,

[
ξ(q)
mp

]
=






ξ
(q,p)
m1 ξ

(q,p)
m12 0

−ξ
(q,p)
m12 ξ

(q,p)
m1 0

0 0 ξ
(q,p)
m2




 , (3a)

2◦(D∞) :
[
ξ(q)
ep

]
=






ξ
(q,p)
e1 ξ

(q,p)
e12 0

−ξ
(q,p)
e12 ξ

(q,p)
e1 0

0 0 ξ
(q,p)
e2




 ,

[
ξ(q)
mp

]
=





−ξ

(q,p)
e1 −ξ

(q,p)
e12 0

ξ
(q,p)
e12 −ξ

(q,p)
e1 0

0 0 −ξ
(q,p)
e2




 , (3b)

3◦(C∞v) :
[
ξ(q)
ep

]
=

[
ξ(q)
mp

]
=






ξ
(q,p)
e1 ξ

(q,p)
e12 0

−ξ
(q,p)
e12 ξ

(q,p)
e1 0

0 0 ξ
(q,p)
e2




 , (3c)



Scatering from multiple biansotropic cylinders 163

4◦(D∞h) :
[
ξ(q)
ep

]
=






ξ
(q,p)
e1 ξ

(q,p)
e12 0

−ξ
(q,p)
e12 ξ

(q,p)
e1 0

0 0 ξ
(q,p)
e2




 ,

[
ξ(q)
mp

]
=






ξ
(q,p)
e1 −ξ

(q,p)
e12 0

ξ
(q,p)
e12 ξ

(q,p)
e1 0

0 0 ξ
(q,p)
e2




 . (3d)

It is understood that, strictly speaking, all the elements in (3) should
be a function of the operating angular frequency which is suppressed
here.

3. FIELD DISTRIBUTION

In Fig. 1, the excitation is provided by a plane EM wave, and TMz

and TEz polarizations are considered simultaneously. The normally
incident wave with respect to the coordinate system O(ρ, ϕ, z) can
be expressed as

[
Einc

z

H inc
z

]
=

[
ATME0

ATEH0

]
eikρ cos(ϕ−ϕ0), (4a, 4b)

For TMz polarization ATM = 1, ATE = 0, while for TEz polariza-
tion ATE = 1, ATM = 0. In the coordinate system O

(q)
M

(
ρ
(q)
M , ϕ

(q)
M , z

(q)
M

)
,

the incident fields can be stated as








E
inc(q)
zM

H
inc(q)
zM

E
inc(q)
ϕM

H
inc(q)
ϕM









=
∞∑

n=−∞
ine

in
(
ϕ

(q)
M

−ϕ0

)
eikρ′

q cos(ϕ′
q−ϕ0)

[
J̃

(q)
nM

] [
E0ATM

H0ATE

]
,

(5a)
where

[
J̃

(q)
nM

]
=








J
(q)
nM 0
0 iJ

(q)
nM/η

0 J
(q)′

nM

iJ
(q)′

nM /η 0








, (5b)

and J
(q)
nM = Jn

(
kρ

(q)
M

)
, J

(q)′

nM = ∂Jn(x)
∂x

∣
∣
∣
x=kρ

(q)
M

, Jn(·) is the nth-order

Bessel function of the first kind.
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Since the cross-polarization can be expected for every materials fea-
turing bianisotropy, the scattered fields must have both TMz and TEz

components owing to the existence of the multiple bianisotropic cylin-
ders. So the scattered fields of the tangential components are expressed
as 







E
s(q)
zM

H
s(q)
zM

E
s(q)
ϕM

H
s(q)
ϕM









=
∞∑

n=−∞
einϕ

(q)
M

[
H̃

(q)
nM

]
[

a
(q)
nM

b
(q)
nM

]

, (6)

where H
(q)
nM = H

(2)
n

(
kρ

(q)
M

)
, H

(q)′

nM = ∂H
(2)
n (x)
∂x

∣
∣
∣
x=kρ

(q)
M

, H
(2)
n (·) is the

nth Hankel function of the second kind and a(b)(q)nM are the unknown
coefficients determined from the boundary conditions.

Based on the gyrotropic form of the four constitutive tensors shown
in (2), the tangential field components in the pth layer of the qth
cylinder with respect to O

(q)
1

(
ρ
(q)
1 , ϕ

(q)
1 , z

(q)
1

)
can be written as

E(q)
zp =

∑

±
E

(q)
zp±, H(q)

zp =
∑

±
H

(q)
zp±, E(q)

ϕp =
∑

±
E

(q)
ϕp±, H(q)

ϕp =
∑

±
H

(q)
ϕp±,

(7a)
and









E
(q)
zp±

H
(q)
zp±

E
(q)
ϕp±

H
(q)
ϕp±









=
∞∑

n=−∞









X
(q)
1p± X

(q)
2p±

X
(q)
3p± X

(q)
4p±

X
(q)
5p± X

(q)
6p±

X
(q)
7p± X

(q)
8p±









[
D

(q)
1np±

D
(q)
2np±

]

einϕ
(q)
1 , (7b)

where X
(q)
sp±(s = 1, · · · , 8) are presented in APPENDIX 1, and D

(q)
1np±

and D
(q)
2np± are unknown mode expanding coefficients. Especially, for

a bianisotropic core (p = 1), we should have D
(q)
2n1± = 0 by taking

account of the singularity of the Neumann function at the origin. So,
enforcing the boundary conditions of tangential continuous electric and
magnetic fields at ρ

(q)
1 = R

(q)
1 , we have

[
x

(q)
11

] [
d̃

(q)
1

]
=

[
x

(q)
12

] [
d̃

(q)
2

]
, (8a)
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and

[
x

(q)
11

]
=








X
(q)
11+ X

(q)
11− 0 0

X
(q)
31+ X

(q)
31− 0 0

X
(q)
51+ X

(q)
51− 0 0

X
(q)
71+ X

(q)
71− 0 0








,

[
x

(q)
12

]
=








X
(q)
12+ X

(q)
22+ X

(q)
12− X

(q)
22−

X
(q)
32+ X

(q)
42+ X

(q)
32− X

(q)
42−

X
(q)
52+ X

(q)
62+ X

(q)
52− X

(q)
62−

X
(q)
72+ X

(q)
82+ X

(q)
72− X

(q)
82−








,

[
d̃

(q)
1

]
=

[
D

(q)
1n1+ D

(q)
1n1− 0 0

]T
,

[
d̃

(q)
2

]
=

[
D

(q)
1n2+ D

(q)
2n2+ D

(q)
1n2− D

(q)
2n2−

]T
. (8b)

where the superscript T denotes the transpose of matrix. For an
impedance core (p = 1), (8a, b) are turned into







Y
(q)
12+ Y

(q)
22+ Y

(q)
12− Y

(q)
22−

Y
(q)
32+ Y

(q)
42+ Y

(q)
32− Y

(q)
42−

0 0 0 0
0 0 0 0







[
d̃

(q)
2

]
= [0], (9a)

where

Y
(q)
12± =X

(q)
12± + η(q)

z X
(q)
72±, Y

(q)
22± = X

(q)
22± + η(q)

z X
(q)
82±,

Y
(q)
32± =X

(q)
52± − η(q)

ϕ X
(q)
32±, Y

(q)
42± = X

(q)
62± − η(q)

ϕ X
(q)
42±. (9b)

Here η
(q)
z and η

(q)
ϕ are the surface impedances at ρ

(q)
1 = R

(q)
1 . The

boundary conditions for the tangential components of the electric and
magnetic fields at ρ

(q)
p = R

(q)
p and ρ

(q)
1 = R

(q)
1 (2 ≤ p ≤ M) are to

be enforced. This requires that the fields (7) must be translated into
the coordinate system O

(q)
p

(
ρ
(q)
p , ϕ

(q)
p , z

(q)
p

)
using the translational

addition theorem (TATM) for cylindrical wave functions, i.e.,

Zn

(√
S

(q)
p±ρ

(q)
1

)
einϕ

(q)
1 =

+∞∑

m=−∞
Zm−n

(√
S

(q)
p±ρ(q)

p

)

· Jm

(√
S

(q)
p±d

(q)
p1

)
e
i
[
mϕ

(q)
p −(m−n)ϕ

(q)
p1

]
, (10)
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where ϕ
(q)
p1 is the angle between the line O

(q)
p O

(q)
1 and the x-axis.

Furthermore, (7a, b) become








E
(q)
zp±

H
(q)
zp±

E
(q)
ϕp±

H
(q)
ϕp±









=
+∞∑

m=−∞

∞∑

n=−∞









X̃
(q)
1p± X̃

(q)
2p±

X̃
(q)
3p± X̃

(q)
4p±

X̃
(q)
5p± X̃

(q)
6p±

X̃
(q)
7p± X̃

(q)
8p±









[
D

(q)
1np±

D
(q)
2np±

]

eimϕ
(q)
p ,

(11a)
and

X̃
(q)
sp± = e−i(m−n)ϕ

(q)
p1 X

(q)
sp±

∣
∣
∣
∣(J,N)→

(
J̃ ,Ñ

)
;1→p

,

J̃
(q,l)
mnp± = Jm

(√
S

(q)
p±ρ(q)

p

)
Jm−n

(√
S

(q)
p±d

(q)
p1

)
,

Ñ
(q,l)
mnp± = Jm

(√
S

(q)
p±ρ(q)

p

)
Nm−n

(√
S

(q)
p±d

(q)
p1

)
. (11b)

Thus, using the boundary conditions of continuous tangential electric
and magnetic fields at ρ

(q)
p = R

(q)
p (2 ≤ p ≤ M − 1), we find

+∞∑

n=−∞

[
x

(q)
1p

] [
d̃(q)

p

]
=

+∞∑

n=−∞

[
x

(q)
1p+1

] [
d̃

(q)
p+1

]
, (12)

In order to exploit the boundary conditions on the external surface
ρ
(q)
M = R

(q)
M , the TATM shown in APPENDIX 2 for the Hankel func-

tions must be employed, and the boundary conditions for the electric
and magnetic fields results in

+∞∑

n=−∞

[
x

(q)
1M

] [
d̃

(q)
M

]
= ime−imϕ0eikρ′

q cos(ϕ′
q−ϕ0)

[
J̃

(q)
mM

] [
E0ATM

H0ATE

]

+
[
H̃

(q)
mM

]
[

a
(q)
mM

b
(q)
mM

]

+
[
J̃

(q)
mM

]

N∑

g=1
g �=q

+∞∑

n=−∞
H

(2)
m−n (kDqg) e−i(m−n)ϕ′

qg

[
a

(g)
nM

b
(g)
nM

]

(13)

in which the last terms of the series summations at the right handside
is the mutual coupling between q and g, g = 1, 2, · · · , N(q �= g)
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cylinders, and it should be noted that the above system equations (8)
or (9), (12) and (13) are solved for each m independently. To find
a numerical solution of the a(b)(q)nM (q = 1, · · · , N), all the system
equations must be truncated to a finite size. Physical intuition suggests
that the truncation N0(m, n = −N0, · · · , N0) depends mainly on the
electric size max

{
k0R

(q)
M

}
, and N0 becomes not very large for above

electrically non-large case. Including the terms (2N0 +1) in the series
summations above leads to L = 4(2N0 + 1) equations in (8) or (9),
(12) and (13), respectively. So the system equations for the unknown
coefficients a(b)(q)nM are stated as:

[
X

(q)
MM

]

L×L

[
X(q)

]−1

L×L

[
X

(q)
11

]

L×L

[
D

(q)
1

]

L×1
−

[
H̃

(q)
mM

]
[

a
(q)
mM

b
(q)
mM

]

−
[
J̃

(q)
mM

] N∑

g=1
g �=q

+∞∑

n=−∞
H

(2)
m−n (kDqg) e−i(m−n)ϕ′

qg

[
a

(g)
nM

b
(g)
nM

]

= ime−imϕ0eikρ′
q cos(ϕ′

q−ϕ0)
[
J̃

(q)
mM

] [
E0ATM

H0ATE

]
(14)

in which all the matrices are defined in APPENDIX 3.
Alternatively, for N cylinder we can obtain N system equations

taking a similar form as (14) (q = 1, · · · , N) for all the unknown
coefficients a(b)(q)nM and the numerical solution is feasible. However,
most of the computer time is consumed by the system matrix inversion
and not for matrix filling. Therefore, for a large number of N a
reduction in the CPU time for the matrix inversion can be achieved
using the fast iterative scattering technique as shown as in [17, 41,
42]. On the other hand, for electrically large cylinders, N0 should be
chosen to be very large, and under such circumstance, the asymptotic
technique of geometric optics must be adopted [5].

Furthermore, the far scattered field can then be computed after us-
ing the large argument approximation of Hankel function, and the cor-
responding formulations for determining of the co- and cross-polarized
scattering cross sections

(
σco(cross)

)
, or the echo width are presented

in [28] and [31], respectively. However, it should be pointed out that
the definitions of σcross in [31] is different from that in [28].

On the other hand, it is well known that, according to the princi-
ple of equal volume model, the scattering of an electromagnetic wave
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from two-dimensional objects of arbitrary cross sections can be ap-
proximately modeled by a number of circular cylinders with the same
constitutive relations [42]. Therefore, the above planar array can be
exploited to model the scattering of various two-dimensional complex
bianisotropie objects described by the constitutive relations (1a, b)
and (2). Based on the scattering model shown in [8], Table 1 shows
the modeling arrangements of some bianisotropic cylinders, and such
arrangements are proven to be accurate enough for predicting the scat-
tering characteristics of bianisotropic objects for a plane wave as well
as a beam wave incidence of TMz or TEz polarization.

In Table 1, the modeling cylinders’ radii can be chosen to be
(p = 1) :

for case (a),

R
(q)
1 ={0.2500λ, 0.0126λ, 0.0252λ, 0.0518λ, 0.0252λ, 0.0126λ, · · · ,

0.0126λ, 0.0252λ, 0.0518λ, 0.0252λ, 0.0126λ, q=1, 2, · · · , 21,
21∑

q=1

Vq = 0.25λ2}

for case (b),

R
(q)
1 ={0.2500λ, 0.0126λ, 0.0252λ, 0.0518λ, 0.0252λ, 0.0126λ,

0.0126λ, 0.0252λ, 0.0518λ, 0.0252λ, 0.0126λ, 0.0126λ,

0.0252λ, 0.0518λ, 0.0252λ, 0.0126λ,

16∑

q=1

Vq = 0.2366λ2}.

for cases (c) and (d),

R
(q)
1 ={0.2500λ, 0.0126λ, 0.0252λ, 0.0518λ, 0.0252λ, 0.0126λ,

0.0126λ, 0.0252λ, 0.0518λ, 0.0252λ, 0.0126λ,
11∑

q=1

Vq = 0.2232λ2}.
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for case (e),

R
(q)
1 ={0.2500λ, 0.0126λ, 0.0252λ, 0.0518λ, 0.0252λ, 0.0126λ,

6∑

q=1

Vq = 0.2091λ2}.

Here
N∑

q=1
Vq is the total volume of the modeling cylinders per length.

Table 1. The Modeling of five kinds of (in)homogeneous bianisotropic
cylinders.

4. NUMERICAL RESULTS AND DISCUSSIONS

Some computer codes have been developed for calculating the co- and
the cross-polarized echo widths of various multiple bianisotropic planar
arrays, and also the (an)isotropic case is applicable when the magne-
toelectric cross-coupling tensors

[
ξ
(q)
ep,mp

]
are chosen to be very small.

For practical consideration, the permittivity εb and permeability µb

of the isotropic medium are assumed to be εb = ε0 and µb = µ0 in
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the following numerical examples, while the losses of the bianisotropic
cylinders are not taken into account in order that the attenuation by
the cylinders can not mask the constitutive parameter effects. Because
the literature appears to contain very little numerical data for scatter-
ing by inhomogeneous bianisotropic objects, we have not found any
theoretical or measurement results for our models in the literature for
comparison. However, the validity of our programs, including the ac-
curacy and convergence rate, can be checked indirectly by comparing
our results with those shown in [2, 4, 42]. For example, the scattered
far field of the most simple case of two parallel identically isotropic
circular cylinders has been reproduced at first using the above model
case p = 3, q = 2. The truncation term number is N0 = 10 and the
related geometrical parameters are the same as in [42].

In Fig. 2, we let
[
ξ
(q)
ep

]
= −

[
ξ
(q)
mp

]
= −i10−5√µ0ε0I as an approach

to zero, so their effects can be neglected. Obviously, the results shown
in Fig. 2 are in excellent agreement with the corresponding results
presented in [42].

Fig. 3 shows the co- and cross-polarized echo widths of two-layer,
four eccentrical bianisotropic cylinders (p = 2, q = 1, 2, 3, 4) cor-
responding to two different constitutive models, and the inner region
(p = 1) for each of the four cylinders is assumed to be of ordinary
gyroelectric material. Also, the convergence behavior of the above
summations with increasing number N0 has been checked for case
(a), and some values of the σco(cross) are listed in Table 2. Evidently,
at least six-digit accuracy can be achieved for N0 ≥ 10.

In Fig. 3, only the TMz-wave incidence is considered, and two dif-
ferent constitutive models of the UBM are demonstrated corresponding
to the magnetic groups D∞ and D∞h, respectively [36]. It is known
that these UBM can be realized artificially by embedding the right-
handed (RH) or the left-handed (LH) helical elements into a homo-
geneous medium in some special ways. Since

[
ξ
(q)
e2,m2

]
are introduced

here, the cross-polarized field component σcross can be expected as
shown above. For such two UB models, both σco and σcross exhibit a
very different behavior, except that in the forward range ϕ = ϕ0+180◦

for the co-polarized component. It is obvious that, generally speaking,
the de-polarized effect for case (a) is stronger than that of case (b)
under the above circumstances. However, it must be emphasized that
σco(cross) is a function of many factors: all the elements of the four
constitutive tensors, the geometrical parameters of the multiple cylin-
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Figure 2. The scattered far fields of two parallel isotropic cylinders.
ϕ

(1)
3 = 0◦, ϕ

(2)
3 = 180◦,

[
µ

(q)
p

]
= µ0I,

[
ξ
(q)
ep

]
= −

[
ξ
(q)
mp

]
= −i10−5

√
µ0ε0I, d

(q)
21 = d

(q)
31 = 0.0,

(a) ϕ0 = 90◦,
[
ε(q)
p

]
= 4.0ε0I, R

(q)
3 = 0.2λ, R

(q)
1,2 < R

(q)
3 , D12 = 0.8λ.

(b) ϕ0 = 0◦,
[
ε(q)
p

]
= 2.0ε0I, R

(1)
3 = 0.2λ, R

(2)
3 = 0.1λ, R

(q)
1,2 < R

(q)
3 ,

D12 = 0.4λ.

ders, the incident wave frequency, direction and polarization state, et
al.. The appearance of the different effects shown above depends on
the combination of all these factors. In addition, various numerical
tests prove that,
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Figure 3. σco(cross) versus ϕ for two-layer,four composite eccentri-
cal UB cylinders. f = 10GHz, ϕ0 = 45◦, k0R

(q)
1 = 1.0, k0R

(q)
2 =

1.5, N0 = 10, k0ρ
′
q = 4.0,

[
ξ
(q)
e1

]
= −

[
ξ
(q)
m1

]
= −i10−6√µ0ε0I, ϕ

(q)
21 =

180◦, 270◦, 0◦, 90◦, q = 1, 2, 3, 4, ε
(q,1)
1 = 2.54ε0, ε

(q,1)
2 = 2.0ε0, ε

(q,1)
12

= 0.5ε0,
[
µ

(q)
1

]
= µ0I, ε

(q,2)
1 = 4.0ε0, ε

(q,2)
2 = 4.5ε0, µ

(q,2)
1 = µ0, µ

(q,2)
2

= 1.5µ0,

(a)
[
ξ
(q)
e2

]
= −

[
ξ
(q)
m2

]
= −i

√
µ0ε0




0.5 0 0
0 0.5 0
0 0 0.8



 (solid line).

(b) The parameters are the same as (a), except that

[
ξ
(q)
e2

]
= −

[
ξ
(q)
m2

]
=

√
µ0ε0




0 0.5 0

−0.5 0 0
0 0 0



 (dotted line).

Table 2. Convergence tests for σco(cross)/λ (dB/m) with increasing
N0 (ϕ = 180◦).

N0 σco/λ σcross/λ
2 9.031404 −0.300889
3 9.264615 2.636485
4 9.190021 2.204315
5 9.188913 2.222466
6 9.189195 2.221129
7 9.189189 2.221049
8 9.189191 2.221022
9 9.189192 2.221014

10 9.189192 2.221011
11 9.189192 2.221010
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for TMz incidence,

Ez

(
±

[
ξ(q)
ep

]
, ±

[
ξ(q)
mp

])
= Ez

(
∓

[
ξ(q)
ep

]
, ∓

[
ξ(q)
mp

])
, (15a)

Hz

(
±

[
ξ(q)
ep

]
, ±

[
ξ(q)
mp

])
= − Hz

(
∓

[
ξ(q)
ep

]
, ∓

[
ξ(q)
mp

])
, (15b)

for TEz incidence,

Ez

(
±

[
ξ(q)
ep

]
, ±

[
ξ(q)
mp

])
= − Ez

(
∓

[
ξ(q)
ep

]
, ∓

[
ξ(q)
mp

])
, (15c)

Hz

(
±

[
ξ(q)
ep

]
, ±

[
ξ(q)
mp

])
= Hz

(
∓

[
ξ(q)
ep

]
, ∓

[
ξ(q)
mp

])
, (15d)

for TM(E)z incidence,

σco(cross)
(
±

[
ξ(q)
ep

]
, ±

[
ξ(q)
mp

])
= σco(cross)

(
∓

[
ξ(q)
ep

]
, ∓

[
ξ(q)
mp

])
. (15e)

Fig. 4 shows the σco(cross) of two-layer, four identical touching gy-
rotropic bianosotropic (GB) cylinders corresponding to the magnetic
groups C∞v, D∞ and D∞h [36], respectively (p =1, 2, q =1, 2, 3, 4),
while the inner region (p = 1) for each of the four cylinders is sup-
posed to be a ferrite biased by a dc magnetic field. The particular
interest here is the combined effect of both gyrotropy and bianisotropy
on the co- and cross-polarized echo widths.

In Fig. 4, the touching bianisotropic cylinders are assumed to be the
non-magnetic with

[
µ

(q)
2

]
= µ0I (q = 1, 2, 3, 4), while the permit-

tivity tensor
[
ε
(q)
2

]
and the magnetoelectric-coupling tensors

[
ξ
(q)
e2,m2

]

are all in a gyrotropic form, respectively [39, 40]. In addition, it should
be pointed out that the magnitude of each element of

[
ξ
(q)
e2,m2

]
is in

a physically reasonable confinement. Comparing case (a) with (b) or
(c), it is obvious that the co-polarized component σco changes in an
approximately similar way for TMz (or TEz) wave incidence, and
it reaches the maximum in the forward direction ϕ = 225◦. How-
ever, the de-polarized component σcross is strongly governed by both[
ξ
(q)
e2

]
and

[
ξ
(q)
m2

]
, and significant cross-polarized contribution is ex-

pected for case (c) even for normal incidence. It is also predicated that
such de-polarized effect can be further enhanced for oblique incidence.
Naturally, the relations (15a)–(15e) hold true for these GB models.
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Figure 4. σco(cross) versus ϕ for two-layer, four touching composite
eccentric GB cylinders. f = 10GHz, ϕ0 = 45◦, k0R

(q)
1 = 1.0, k0R

(q)
2 =

1.5, k0ρ
′
q = 2.12,

[
ξ
(q)
e1

]
= −

[
ξ
(q)
m1

]
= −i10−6√µ0ε0I, ϕ

(q)
21 = 180◦,

270◦, 0◦, 90◦, q = 1, 2, 3, 4, N0 = 10,
[
ε
(q)
1

]
= 12.6ε0I, M

(q)
s µ0 =

0.275T, ω
(q)
0 /ω

(q)
m = 0.3, µ

(q,1)
2 = µ0, µ

(q,1)
1 = µ0ω

(q)
0 ω

(q)
m /

[
ω

(q)2
0 − ω2

]
,

µ
(q,1)
12 = −µ0ωω

(q)
m /

[
ω

(q)2
0 − ω2

]
, ε

(q,2)
1 = 4.0ε0, ε

(q,2)
2 = 4.5ε0, ε

(q,2)
12 =

0.5ε0, ω
(q)
m = 2.21×105M

(q)
s ,

[
µ

(q)
2

]
= µ0I, ω

(q)
0 = 2.21×105H

(q)
0 , H

(q)
0

is the magnitude of the internal dc bias field,

(a)
[
ξ
(q)
e2

]
=−

[
ξ
(q)
m2

]
=
√

µ0ε0

[
C

(q)
2

]
,

[
C

(q)
2

]
=




−i0.5 0.6 0
−0.6 −i0.5 0

0 0 −i0.8



 .

(b)
[
ξ
(q)
e2

]
=

[
ξ
(q)
m2

]
=
√

µ0ε0

[
C

(q)
2

]
.

(c)
[
ξ
(q)
e2

]
=
√

µ0ε0




i0.5 0.6 0
−0.6 i0.5 0

0 0 i0.8



,
[
ξ
(q)
m2

]
=
√

µ0ε0




i0.5 −0.6 0
0.6 i0.5 0
0 0 i0.8



.

Furthermore, the co- and cross-polarized scattering echo widths
σco(cross) of an inhomogeneous bianisotropic square cylinder is depicted
in Fig. 5, which is successfully modeled by using one ferrite circular
cylinder combined with 20 UB circular cylinders of different radii and
same constitutive parameters (p = 1). The arrangement of 21 circu-
lar cylinders is shown in Table 1, and the computed results for the
isotropic square cylinder is in a good agreement with that obtained by
a moment method [42].



Scatering from multiple biansotropic cylinders 175

Figure 5. σco(cross) versus ϕ for a ferrite and UB composite square
cylinder. f = 10 GHz, k0d = 3.1416, ϕ0 = 45◦,

(a)
[
ε
(q)
1

]
= 4.0ε0I,

[
µ

(q)
1

]
= µ0I,

[
ξ
(q)
e1

]
=

[
ξ
(q)
m1

]
= −i10−6√µ0ε0I,

q = 1, 2, · · · , 21.

(b)
[
ε
(1)
1

]
= 12.6ε0I, M (1)

s µ0 =0.275T, ω(1)
m =2.21×105M (1)

s , µ
(1,1)
2 =µ0,

µ
(1,1)
1 = µ0ω

(1)
0 ω(1)

m /

[
ω

(1)
0

2
− ω2

]
, µ

(1,1)
12 = −µ0ωω(1)

m /

[
ω

(1)
0

2
− ω2

]
,

ε
(q,1)
1 = 4.0ε0, ε

(q,1)
2 =4.5ε0, µ

(q,1)
1 =1.0µ0, µ

(q,1)
2 =1.5µ0, q=2, · · ·, 21,

ξ
(q,1)
e1 = −ξ

(q,1)
m1 = −i0.5

√
µ0ε0, ξ

(q,1)
e2 = −ξ

(q,1)
m2 = −i0.8

√
µ0ε0,

ω
(1)
0 /ω(1)

m = 0.3.

(c) The par ameters are the same as (b), except that ω
(1)
0 /ω(1)

m = 1.5.

(d) The par ameters are the same as (c), except that ω
(1)
0 /ω(1)

m = 2.5.
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In Figs. 5(b)–(d), only the plane TMz-wave incidence is demon-
strated (ϕ0 = 45◦), and such an inhomogeneous bianisotropic square
cylinder is assumed to be the same geometrical size (0.5×0.5λ2) as in
case (a). With respect to the coordinate system of XOY, the locations
of the 21 modeling cylinders are determined by:(
ρ′q, ϕ′

q

)
= ( 0, 0◦ ), ( 0.007878, 22.3233◦ ), ( 0.008256, 30.2203◦ ),

( 0.009053, 45◦ ), ( 0.008256, 59.7796◦ ), (0.007878, 67.6766◦), · · · ,
( 0.009053, 135◦ ), · · · , ( 0.009053, 225◦ ), · · · , ( 0.009053, 315◦ ).

It is apparent that for this special geometry the indirect modeling
technique is efficient, flexible and has some advantages over the direct
numerical method. The magnitude of σco in the forward range is
decreased with the increasing of the bias field intensity ω

(1)
0 /ω

(1)
m from

0.3 → 1.5 → 2.5, and conversely, σcross is increased. In some special
direction, the de-polarized effect can disappear in the scattered field
for case (b) or (c). So σco(cross) can be effectively adjusted by varying
the bias field intensity ω

(1)
0 /ω

(1)
m .

Finally, Fig. 6 depicts the co- and cross-polarized scattered field
characteristics of three kinds of irregular cylinders for TMz-wave in-
cidence, and they are all composites of ferrite and GB media. The
geometrical shapes of the cross sections are the same as shown in
Table 1(b), (c) and (d), respectively, and the radius of the central
ferrite is R

(1)
1 = 0.25λ as above.

In Fig. 6, the bianisotropic cylinders are non-magnetic with
[
µ

(q)
1

]
=

µ0I, and the permittivity tensor
[
ε
(q)
1

]
as well as the magnetoelectric-

coupling tensors
[
ξ
(q)
e1,m1

]
are all in a gyrotropic form corresponding

to the magnetic group C∞v [36]. Based on the arrangement shown
in Table 1 or in Figs. 5(b)–(d), such three irregular composite cylin-
ders are modeled using 16 and 11 circular cylinders, respectively. The
locations of the 11 modeling cylinders for case (c) are given by:(
ρ′q, ϕ′

q

)
= ( 0, 0◦ ), ( 0.007878, 202.3233◦ ), ( 0.008256, 210.2203◦ ),

( 0.009053, 225◦ ), ( 0.008256, 239.7796◦ ), (0.007878, 247.6766◦),
(0.007878, 292.3233◦), (0.008256, 300.2203◦), ( 0.009053, 315◦ ),
(0.008256, 329.7796◦), (0.007878, 337.6766◦).
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Figure 6. σco(cross) versus ϕ for three irregular composite cylinders
of the ferrite and GB medium. f = 10GHz, k0d = 3.1416, ϕ0 =
45◦,

[
ε
(1)
1

]
= 12.6ε0I, M

(1)
s µ0 = 0.275T, ω

(1)
m = 2.21 × 105M

(1)
s ,

µ
(1,1)
2 = µ0, µ

(1,1)
1 = µ0ω

(1)
0 ω

(1)
m /

[
ω

(1)
0

2
− ω2

]
, µ

(1,1)
12 = −µ0ωω

(1)
m /

[
ω

(1)
0

2
− ω2

]
, ω

(1)
0 / ω

(1)
m = 0.3, ε

(q,1)
1 = 4.0ε0, ε

(q,1)
2 = 4.5ε0, ε

(q,1)
12 =

0.5ε0,
[
µ

(q)
1

]
= µ0I,

[
ξ
(q)
e1

]
=−

[
ξ
(q)
m1

]
=
√

µ0ε0




−i0.5 0.6 0
−0.6 −i0.5 0

0 0 −i0.8



.

(b) : q = 2, · · · , 16. (c) (d) : q = 2, · · · , 11.

While for case (d),
(
ρ′q, ϕ′

q

)
= ( 0, 0◦ ), ( 0.007878, 22.3233◦ ), ( 0.008256, 30.2203◦ ),

( 0.009053, 45◦ ), ( 0.008256, 59.7796◦ ), (0.007878, 67.6766◦),
(0.007878, 202.3233◦), (0.008256, 210.2203◦), ( 0.009053, 225◦ ),
(0.008256, 239.7796◦), (0.007878, 247.6766◦).

It is interesting to note that, the main differences in the magnitude
of σco are nearly in the range of ϕ ⊂ [0◦, 180◦] and [300◦, 360◦], and
σcross changes in a similar way except that in some special direction ϕ.

Following the same way adopted above, similar conclusions can be
drawn for the TEz-wave incidence.

5. CONCLUSION

In this paper, the scattering from multiple composite bianisotropic
cylinders has been investigated carefully, and our attention has been
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paid to the combined effects of both geometrical and constitutive pa-
rameters of various bianisotropic cylindrical structures on the co- and
cross-polarized scattering cross sections. It has been proven that the
indirect modeling technique possesses the advantages of simplicity and
efficiency under some circumstances. Actually, many bianisotropic
cylindrical scatterers with complex cross-section, such as internal inho-
mogeneity, et al., can be modeled using the above given planar array
in Fig. 1, and acceptable results for the scattering features of com-
posites can be found. On the other hand, the present study can pro-
vide much insight into the electromagnetic scattering features of bian-
isotropic composites and their potential applications in microwave and
millimeter wave regimes.

APPENDIX 1.

In (6),

X
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1p± = S

(q)
p±J
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np± , X

(q)
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np± ,

X
(q)
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(q)
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APPENDIX 2.

To transform the scattered fields of gth cylinder (g = 1, · · · , N ;
g �= q) with respect to O

(g)
M

(
ρ
(g)
M , ϕ

(g)
M , z

(g)
M

)
to the qth coordinates

O
(q)
M

(
ρ
(q)
M , ϕ

(q)
M , z

(q)
M

)
, we must have

H(2)
n

(
kρ

(g)
M

)
einϕ

(g)
M =

+∞∑

m=−∞
H

(2)
n−m(kDqg)Jm

(
kρ

(q)
M

)
e
i
[
mϕ

(q)
M

−(m−n)ϕ′
qg

]
,

(A2a)
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and

D2
qg = ρ′2q + ρ′2g − 2ρ′qρ

′
g cos(ϕ′

q − ϕ′
g), (A2b)

ϕqg =






cos−1

(
ρ′q cos ϕ′

q−ρ′g cos ϕ′
g

Dqg

)
, ρ′q sinϕ′

q ≥ ρ′g sinϕ′
g,

− cos−1

(
ρ′q cos ϕ′

q−ρ′g cos ϕ′
g

Dqg

)
, ρ′q sinϕ′

q < ρ′g sinϕ′
g.

(A2c)

APPENDIX 3.

Eq. (8)–(12) can be written as

[
X

(q)
11

]

L×L

[
D

(q)
1

]

L×1
=

[
X

(q)
12

]

L×L

[
D

(q)
2

]

L×1
, (A3a)

[
X

(q)
22

]

L×L

[
D

(q)
2

]

L×1
=

[
X

(q)
23

]

L×L

[
D

(q)
3

]

L×1
, (A3b)

[
X(q)

pp

]

L×L

[
D(q)

p

]

L×1
=

[
X

(q)
p(p+1)

]

L×L

[
D

(q)
p+1

]

L×1
, (A3c)

[
X
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L×L

[
D

(q)
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]

L×1
=

[
X

(q)
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]

L×L

[
D

(q)
M

]

L×1
. (A3d)

Combining (A3a) with (A3b)–(A3d), we have

[
D

(q)
M

]

L×1
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[
X(q)

]−1

L×L

[
X

(q)
11

]
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[
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(q)
1
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where
[
X(q)

]

L×L
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[
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] [
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(q)
22
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· · ·
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· · ·
[
X

(q)
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X

(q)
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