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1. INTRODUCTION

The finite-volume, time-domain (FVTD) method has been considered
in recent years as a viable tool for the simulation of the electromag-
netic field [1–3]. Its popularity among some researchers stems from
its overwhelming success in predicting vortices, shocks and the like in
complicated high-speed fluid flows [4]. The idea behind the conversion
of a computational fluid dynamics (CFD) solver into a computational
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electromagnetics (CEM) solver has its roots in the mathematical sim-
ilarities of the equations of Maxwell and the equations of Euler. Since
both systems are hyperbolic, the argument is made that similar dis-
cretization procedures for both systems may be invoked as well.

The previous argument is indeed valid if the task is to model a plane
wave in an unbounded medium. For this situation, the FVTD scheme
can be shown to be both consistent and conditionally stable, which
implies from Lax’s theorem that the scheme’s data will converge to the
correct answer for infinitesimal cell sizes and time steps [5]. However,
the role of the solver is not to model such simplistic cases. The purpose
of the solver is to model the electromagnetic event as created by finite
sources and disturbed by physical boundaries and/or media. Herein,
then, lies the question of the role of the nodally collocated FVTD solver
in computational electromagnetics.

It is not the purpose of this paper to editorialize on the FVTD
role in CEM, but to demonstrate certain key features, attributes and
deficiencies of the FVTD solver. We do so by first laying a precise
mathematical foundation on which the scheme is built. This founda-
tion, which seems to be well-understood in the CFD community for
conservation-based equations, has not been adequately articulated to
the CEM community in the context of Maxwell’s equations. From this
foundation, the role of the grid metrics and the primitive vector is
clearly explained, both for the interior scheme as well as the boundary
scheme.

The paper concludes with some case studies that demonstrate key
features of the FVTD scheme. These case studies include one-
dimensional wave propagation in a free-space cavity and in a partially
filled dielectric cavity, three-dimensional wave propagation in a cir-
cular waveguide, and three-dimensional scattering from a post in an
unbounded medium.

2. FORMULATION

It is well known that the mathematical description of the electromag-
netic field is given as a solution to the two curl and two divergence
equations of Maxwell [6]. In the ensuing subsections, a short descrip-
tion of these equations is provided and methods for their discretization
are examined in detail.
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2.1 Point Vector Form

Letting E and H denote the vector symbols of the electric and
magnetic fields, respectively, Maxwell postulated that

µ
∂H
∂t

+ ∇× E = 0, (1)

ε
∂E
∂t

−∇× H = 0, (2)

∇ · E = 0, (3)

and
∇ · H = 0. (4)

The previous description assumes that the space under consideration is
devoid of sources. In addition, the assumptions that the permittivity
ε and the permeability µ are scalars and of constant value are made.
For purposes of numerical computation, the two curl equations are
discretized and advanced in time; the two divergence equations are
additional constraints imposed upon the fields.

An alternate form of Maxwell’s equations that has significance to
certain discretization operators is obtained by adding and subtracting
like terms within the two curl equations:

µ
∂H
∂t

+ ∇× F+
e + ∇× F−

e = 0 (5)

ε
∂E
∂t

−∇× F+
m −∇× F−

m = 0, (6)

where

F+
e = (E − ηn × H)/2, (7)

F−
e = (E + ηn × H)/2, (8)

F+
m =

1
2

(
H +

n × E
η

)
, (9)

and

F−
m =

1
2

(
H − n × E

η

)
. (10)

In Eqns. (7)–(10), n is an arbitrary unit vector yet to be specified.
Obviously, F+

e + F−
e = E and F+

m + F−
m = H , as required. More
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importantly, for a plane wave traveling in the n direction, F−
e and

F−
m are identically zero, whereas F+

e and F+
m are not. Likewise, for

a plane wave traveling in the negative n direction, F+
e , and F+

m are
identically zero, whereas F−

e and F−
m are not. Thus, it can be argued

that the role of F+
e , F+

m , F−
e , and F−

m is to discriminate between a
plane wave traveling in the positive or negative n directions.

2.2 Global Vector Form

The global form of the governing equations can be obtained by in-
tegrating the point-form equations over some volume V . The volume
is enclosed by the surface S , which is defined by the outward pointing
normal n . Integrating over V and invoking the vector curl theorem,
we obtain

ε
∂Ea

∂t
=

1
V

∫
S
n × H dS (11)

and
µ

∂Ha

∂t
=

1
V

∫
S
E × n dS. (12)

Here Ea and Ha are the average values of E and H , respectively,
within the volume V . That is,

Ea =
1
V

∫
V

E dV (13)

and
Ha =

1
V

∫
V

H dV. (14)

A chief attribute of both Eqns. (11) and (12) is the exclusive mani-
festation of tangential field components on the volume surface. This
attribute is compatible with the boundary conditions for E and H
[6].

The integration of Eqns. (5) and (6) throughout the volume V is
accomplished in the exact same manner as in the previous section. The
result is

ε
∂Ea

∂t
=

1
V

∫
S
n × F+

m dS +
1
V

∫
S
n × F−

m dS (15)

and
µ

∂Ha

∂t
=

1
V

∫
S
F+

e × n dS +
1
V

∫
S
F−

e × n dS. (16)
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The unit vector n in Eqns. (7)–(10) is now defined to be the vector
normal to the surface S .

2.3 Global Curvilinear Form

Given the similarity of Eqns. (11), (12), (15), and (16), we consider
the following canonical integral equation as the basis for the ensuing
mathematical development:

∂Ua

∂t
=

1
V

∫
S
n × F dS (17)

where Ua denotes either εEa or µHa ; F denotes either −E , H ,
−F+

e − F−
e or F+

m + F−
m , depending upon the context. Also, in an-

ticipation of the numerical procedure, the volume V is assumed to be
comprised of six faces S1 , S2 , · · · , S6 ; the sum of these faces is the
closed surface S . For a six-sided volume, Eqn. (17) reduces to

∂Ua

∂t
=

1
V

6∑
l=1

Il (18)

where
Il =

∫
Sl

nl × F dS; (19)

here nl is the outward-pointing normal to Sl .
The evaluation of the integrals in Eqn. (18) is facilitated by estab-

lishing a curvilinear transformation that maps V into V ′ , the trans-
formed region of integration. The mapping is accomplished through the
following equations: ξ = ξ(x, y, z) , η = η(x, y, z) , and ζ = ζ(x, y, z) .
By invoking the Jacobian J , we compute the average value via

Ua =
1
V

∫
V ′

U′J dξdηdζ; (20)

here U′(ξ, η, ζ, t) = U(x(ξ, η, ζ), y(ξ, η, ζ), z(ξ, η, ζ), t) .
Next consider the integration over the six faces. The surfaces S1 ,

S2 , S3 , S4 , S5 , and S6 are defined by ξ = ξ1 (ξ1 is a constant),
ξ = ξ2 , η = η1 , η = η2 , ζ = ζ1 , and ζ = ζ2 , respectively. One of
these surfaces, say S2 and its integral I2 , is the focus of the following
development; the remaining five surface integrals are evaluated in a
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similar fashion. Considering Eqn. (19) for l = 2 , we obtain, through
a change of variables the equation,

I2 =
∫

S′
2

n2 × F′(ξ2, η, ζ, t)J |∇ξ|dηdζ, (21)

where F′(ξ, η, ζ, t) = F(x(ξ, η, ζ), y(ξ, η, ζ), z(ξ, η, ζ), t) and S′
2 is the

transformed region associated with S2 . Since ∇ξ is perpendicular to
surfaces of constant ξ , n2|∇ξ| = ∇ξ and

I2 =
∫

S′
2

∇ξ × F′(ξ2, η, ζ, t)Jdηdζ. (22)

One approach towards evaluating I2 from known cell average values
consists of introducing a primitive vector W , whose derivative is I2

[7]. Stated mathematically,

∂W2

∂ξ
≡ I2 (23)

Primitive vectors for the other surface integrals are defined in a similar
manner. It is apparent from the above equation that value of the sur-
face integral hinges upon the mechanism for computing the primitive
vector and its derivative.

Values for the primitive vector are deduced by considering a more
general definition for its derivative than the one provided by Eqn. (23).
Let

∂W(ξ)
∂ξ

=
∫

S′(ξ)
∇ξ × F′(ξ, η, ζ)Jdηdζ. (24)

From this definition, it follows that S′(ξ2) = S′
2 and

∂W(ξ)
∂ξ

∣∣∣∣∣
ξ=ξ2

=
∂W2

∂ξ
. (25)

Then, by means of Riemann integration of Eqn. (24),

W(ξ) = W(ξ1) +
∫ ξ

ξ1

∫
S′(τ)

∇ξ × F′(τ, η, ζ)Jdηdζdτ. (26)
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The evaluation of this integral at ξ = ξ2 yields

W(ξ2) = W(ξ1) +
∫ ξ2

ξ1

∫
S′(τ)

∇ξ × F′(τ, η, ζ)Jdηdζdτ. (27)

By definition the integration term is proportional to the average value
of ∇ξ × F over the volume V and hence,

W(ξ2) = W(ξ1) + V (∇ξ × F)a. (28)

The antecedent equation fundamentally states that the exact value
of W at domain walls can be determined from the average value of
∇ξ × F within that domain.

The previous equation is exact, provided that the metric information
associated with ∇ξ is known exactly. To compute the metrics, a
mathematical description of the ξ is required. Consider the description
ξ = ξl +ξn , where ξl and ξn represent the linear and non-linear terms
of ξ , respectively. Since ∇ξl is constant, it follows from Eqn. (28) that

W(ξ2) = W(ξ1) + V ∇ξl × Fa + V (∇ξn × F)a. (29)

If ∇ξn is regarded as sufficiently small throughout the volume, then

W(ξ2) ≈ W(ξ1) + V ∇ξl × Fa, (30)

which is a second-order approximation. The error of this approxima-
tion ε is obtained by the mean value theorem of integral calculus:

ε = F′(ξ◦, η◦, ζ◦)
∫

V ′
∇ξndξdηdζ, (31)

where ξ◦, η◦, ζ◦ is some point in the volume V ′ . For volumes that are
parallelepipeds, ε = 0 .

A value for ∇ξl can be obtained from the geometry of the volume.
In the Appendix, we show that ∇ξ ≈ δξAa

ξ/V , where δξ is the dis-
tance between S1 and S2 and Aa

ξ is the average directed surface area
in the ξ direction within V . By definition,

Aa
ξ =

1
δξ

∫ ξ2

ξ1

A(ξ)dξ. (32)
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Figure 1. A pictorial representation of the indexing scheme used in
the flux reconstruction.

Therefore, Eqn. (30) reduces to

W(ξ2) ≈ W(ξ1) + δξAa
ξ × Fa, (33)

Due to the simplicity of the Eqn. (33), the code development for the
primitive vector is trivial.

To obtain an approximation for the derivative of the primitive vec-
tor, the domain V is sub-divided into many sub-volumes, each de-
noted as Vi−1/2,j−1/2,k−1/2 ; Eqn. (18) is now an equation over each
sub-domain. The six surfaces defining each sub-volume are still de-
noted locally as S1 through S6 . Globally, the surfaces S1 and S2

are defined by the equations ξ = ξi−1 and ξ = ξi , respectively. Like-
wise, η = ηj−1 , η = ηj , ζ = ζk−1 , and ζ = ζk globally define S3 ,
S4 , S5 , and S6 , respectively. Using this notation, we cast Eqn. (28)
as follows:

Wi = Wi−1 + Vi−1/2(∇ξ × F)a
i−1/2, 1 ≤ i ≤ Ipts (34)

where (∇ξ × F)a
i−1/2 is the average value of ∇ξ × F in the volume

Vi−1/2 defined by the grid lines i − 1 and i . (The indices j , k
are dropped for clarity; see Figure 1 for a one-dimensional depiction.)
Since W is to be differentiated, W0 may be set to zero, or to any
other value.
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To estimate the derivative of W at the cell surface i (i.e., the value
of I2) , we simply employ standard difference stencils. For example, a
second-order central approximation is given by

∂W
∂ξ

∣∣∣∣
i

≈
(

Wi+1 − Wi−1

2δξ

)
. (35)

Substituting Eqn. (34) in Eqn. (35), we obtain

∂W
∂ξ

∣∣∣∣
i

≈
Vi+1/2(∇ξ × F)a

i+1/2 + Vi−1/2(∇ξ × F)a
i−1/2

2δξ
(36)

Under the assumption that the metrics are computed to second-order,

∂W
∂ξ

∣∣∣∣
i

≈
(

(Aa
ξ × Fa)i+1/2 + (Aa

ξ × Fa)i−1/2

2

)
, (37)

where (Aa
ξ × Fa)i±1/2 is the average value of Aξ in volume i ± 1/2

crossed into the average value of F in volume i ± 1/2 . Eqn. (37) is
valid for cells of unequal size or for stretched grids. For uniform grids,
it seems reasonable to replace Eqn. (37) with

∂W
∂ξ

∣∣∣∣
i

≈ Ai ×
(

Fa
i+1/2 + Fa

i−1/2

2

)
. (38)

Per Eqn. (23), the right hand side of Eqn. (38) is an estimated value
of the surface integral I2 . The equation states that the value of the
surface integral is reconstructed from average values of F .

The previous equation is recognized as being nothing more than a
central average reconstruction and is one of many reconstruction for-
mulas. As with the primitive vector, its computation is trivial. Within
this equation, there exists two approximations. The first is associ-
ated with the discretization of the derivative of the primitive vector.
The second is associated with the accuracy of the metric computa-
tion. Both of these approximations influence the overall accuracy of
the reconstructed value. Instead of using a second-order central deriva-
tive, a fourth-order central derivative could be employed. If however,
the metric is computed to second-order, the reconstructed value is
strictly second-order. For cells that are near parallelepipeds, the non-
linear metric terms are negligible and the accuracy of the reconstructed
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value is strongly influenced by the accuracy of the derivative calcula-
tion. Thus, even if the scheme is not strictly high-order, it still may
be highly accurate.

One difficulty with the employment of central differences for the cal-
culation of the primitive vector derivative (in conjunction with nodally
collocated schemes) is the problem of grid decoupling [8]. Since a cen-
tral operator has holes in its stencil, the unknown and its derivative
at a node are decoupled from each other. For point-source excitation,
the result of this effect is an interlacement of zeros in the data [9].
To overcome this problem, we consider a split flux treatment, which
discretizes F+ and F− , rather than F [10]. Since F = F+ + F− , it
follows from Eqn. (34) that W = W+ + W− , where

W+
i = W+

i−1 + (∇ξ × F+)a
i−1/2, 1 ≤ i ≤ Ipts (39)

and
W−

i = W−
i−1 + (∇ξ × F−)a

i−1/2, 1 ≤ i ≤ Ipts (40)

The differentiation of W+ and W− is accomplished by establishing
difference stencils within the domain of influence of these two vectors.
That is, for the positive-going waves (i.e., F+) , backward stencils are
invoked; for the negative-going waves (i.e., F−) , forward stencils are
invoked. For example, a second-order windward approximation yields

∂W+

∂ξ

∣∣∣∣
i

≈
(

3W+
i − 4W+

i−1 + W+
i−2

2δξ

)
(41)

and
∂W−

∂ξ

∣∣∣∣
i

≈
(
−3W−

i + 4W−
i+1 − W−

i+2

2δξ

)
. (42)

For second-order metrics, the final result, as obtained from the previous
equations and expressed in terms of Fa , is

∂W+

∂ξ

∣∣∣
i
≈ Ai ×

(
3(F+)a

i−1/2 − (F+)a
i−3/2

2

)
, (43)

and
∂W−

∂ξ

∣∣∣
i
≈ Ai ×

(
3(F−)a

i+1/2 − (F−)a
i+3/2

2

)
, (44)
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The sum of these two derivatives is the derivative of the total primitive
vector (or, the value of the surface integral under investigation.)

A table of commonly used stencils that may be invoked for the
derivative of W , W+ or W− may be found in many texts (e.g.,
[11]). Other stencils that are neither central or strictly forward (or
backward) can also be constructed via standard Taylor series analysis.
For such stencils, we denote them as windward biased. In the numerical
examples section, we choose to adopt the third-order windward biased
stencil (3WB1) as the stencil under investigation. That is, let

∂W+

∂ξ

∣∣∣
i
≈

(
2W+

i+1 + 3W+
i − 6W+

i−1 + W+
i−2

6δξ

)
(45)

and
∂W−

∂ξ

∣∣∣
i
≈

(
−2W−

i−1 − 3W−
i + 6W−

i+1 − W−
i+2

6δξ

)
. (46)

Based upon stability arguments and four-stage Runge-Kutta integra-
tion, central differences may be used for either W , W+ or W− .
Windward and windward biased stencils are typically used for only
W+ or W− .

This section is closed by noting that all of the difference stencils
discussed so far are of the explicit type. An alternative to explicit dif-
ferencing is implicit differencing, or compact differencing. For example,
consider the following central compact operator [12, 13]:

αQi+1 + Qi + αQi−1 = β(Wi+1 − Wi−1). (47)

If α = 1/4 and β = 3/4 , then Qi is approximately the derivative
of W at i ; the degree of approximation is fourth-order. Unlike the
fourth-order explicit central operator, which has a stencil that spans
five cells, the fourth-order compact operator spans only three cells.
This attribute is often quoted in the context of boundary operator im-
plementation. Although the above equation represents a tri-diagonal
matrix equation, the solution of that equation is easily obtained by
employing the Thomas algorithm [14]. The number of operations as-
sociated with the computation of Qi is five.

2.4 Boundary Conditions

In addition to the equations that govern propagation, Maxwell’s
equations in global form require that tangential E and H be con-
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tinuous across a dielectric interface. At a perfect electrical conductor
defined by the normal n there exist two conditions of interest:

n × E = 0 n ×∇× H = 0. (48)

These equations are equivalent to

Et = 0
∂Ht

∂n
= 0, (49)

where the subscript t denotes the tangential component. Although
other boundary conditions may be derived, uniqueness of solution is
assured when the tangential fields are specified on the boundary. More-
over, the boundary conditions are compatible with the integrand of the
surface integrals, which highlights an important feature of the nodally
collocated finite-volume procedure. The algorithmic implementation
of these boundary conditions is considered next.

Suppose that i = 0 (locally defined surface S1) resides on a perfect
electric conductor (PEC) and the domain is specified by i ≥ 0 . If the
integrand of I1 is a function of tangential E , then I1 ≡ 0 . If the
integrand of I1 is a function of tangential H , then from the identity

∂W1

∂ξ
=

1
V

∫
S1

n1 × H dS, (50)

it follows that a Neumann condition is implemented by setting

∂2W1

∂ξ2
= 0 on S1. (51)

To second-order, this condition is satisfied by employing an image term
W1(−1) and by setting that image term to the value of 2W1(0) −
W(1) . With this image term, second-order central (2C) or 3WB1
operators can be invoked on the boundary; second-order windward
(2W) or 3WB1 operators can be invoked one cell in from the boundary.
Note: For the case when 3WB1 operators are used in the interior and
2C operators are used on the boundary, the global spatial accuracy is
still third-order [15].

For the situation when S1 resides on a dielectric interface, at least
two possibilities arise. The fact that the tangential fields are continuous
across the interface (but a discontinuous first derivative) allows one
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to reconstruct at that interface with second-order central averages;
the reconstruction is in non-split form. In split form, the process of
reconstruction is more complicated. The complication arises from the
discontinuity of F , due to the η term. To handle this discontinuity,
the primitive vectors associated with E and H are built as before.
However, two values of F (i.e., two values of F+ and two values of
F−) must be deduced, depending upon the cell under consideration.
To the left of S1 , F is a function of ηa ; this F is used in the time
advancement of Ua

i−1/2 . To the right of S1 , F is a function of ηb ;
this F is used in the time advancement of Ua

i+1/2 .
The truncation of the domain or the development of an absorb-

ing boundary condition (ABC) can be accomplished by several means.
The perfectly matched layer (PML) is one such possibility [16]. The
development of such a PML for high-order FVTD schemes is the sub-
ject of future work. In this work, characteristic theory is adopted for
simplicity. In split flux form, we have already noted that F+ and F−

only act on positive- and negative-going waves, respectively. Thus a
suitable ABC can be devised by setting either F+ or F− to zero,
depending upon which vector represents an out-going wave.

2.5 Integration

Upon completion of the reconstruction phase, the semi-discrete
equations take on the form

∂u
∂t

= Au, (52)

which constitutes a constant coefficient, linear system of ordinary dif-
ferential equations. Here u represents every value of Ua throughout
the computational domain and A is the connectivity matrix. Since our
desire is to obtain high-order accuracy, the classical four-stage scheme
is invoked and labeled as RK4. In vector form and in terms of the
auxiliary vectors K1 · · ·K4 , the standard RK4 scheme is as follows
[17]:

K1 = δAun

K2 = δA (un + K1/2)
K3 = δA (un + K2/2)
K4 = δA(un + K3)

un+1 = un + (K1 + 2K2 + 2K3 + K4)/6.

(53)



244 Young et al.

Other techniques for low storage RK integrators are reported in the
literature [18, 19]. Upon the incorporation of all four stages into the
equation for un+1 , the final result is

un+1 =
(

1 + δtA +
δ2
t

2
A2 +

δ3
t

6
A3 +

δ4
t

24
A4

)
un. (54)

Furthermore, by substituting Eqn. (52) into Eqn. (54), we obtain

un+1 =
(

1 + δt
∂

∂t
+

δ2
t

2
∂2

∂t2
+

δ3
t

6
∂3

∂t3
+

δ4
t

24
∂4

∂t4

)
un. (55)

which is the expected truncated Taylor series. These two equations
reveal the main sources of error: 1) Spatial discretization errors incor-
porated in the approximation of ∂u/∂t by Au and 2) temporal errors
as a result of the truncated Taylor series. The manifestations of these
errors, usually couched in terms of dissipation and dispersion errors,
are best characterized in the frequency domain. Since such an analysis
has been provided in many sources, we only note that the predominant
error mechanism is dissipation [12].

One final note: Even though upwind schemes are well known to
prevent grid decoupling, grid decoupling can be induced via the Runge-
Kutta integrator. Since the Runge-Kutta integrator requires that both
field components be advanced simultaneously, the excitation of one
field component is not made manifest to the other field component at
the instant the excitation is applied. This effect is most noticeable
when modeling volumetric and sheet sources; the effect is observed
near the source, where the data extremely alternates between positive
and negative values.

3. NUMERICAL EXAMPLES

In the examples that follow, 3WB1 reconstruction formulas are in-
voked. We choose this stencil for the following reasons: 1) The com-
bination of 3WB1 interior stencils with 2C boundary operators yields
a globally third-order accurate spatial scheme and 2) Windward-based
stencils for nodally collocated schemes partially inhibit grid-decoupled
solutions. (Recall that central-based stencils induce grid-decoupled so-
lutions). As discussed next, this stencil choice may or may not always
yield satisfactory results.
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We begin this section with a simple problem of a guassian pulse
in a one-dimensional perfectly conducting cavity. The form of the
pulse is e−w2t2 , where w = 4.14 × 1010 1/s ; this value for w yields a
frequency spread in excess of 20 GHz . For the simulation parameters,
let δt = 1.179 ps and δx = 0.0005 m . The pulse is assumed to be
traveling at the speed of light. To ascertain both the dissipative and
dispersive effects on the pulse, we marched the pulse 11,314 time steps,
which is the required time for the pulse to attenuate by ten percent
from its initial value; see Figure 2. The slight ripple effect seen in that
plot of Figure 2 is to be expected due to dissipation, dispersion and
boundary related errors. However, since the pulse has traveled twenty
round trips, such effects are certainly anticipated.

To validate the dielectric boundary condition methodology, the
problem of a guassian pulse within a partially filled dielectric cavity is
considered; the dielectric has a relative permittivity value of 2.3 and
fills the first fifty cells of the 200 cell cavity. The pertinent parameters
are the same as in the previous example. The initial pulse is centered
at cell 100 and is traveling to the left as time advances. Representative
results after 230 time steps are provided in Figure 3. As seen directly
from the figure, the theoretical transmission coefficient of −0.795 and
the theoretical reflection coefficient of −0.205 are predicted.

The one-dimensional problems clearly demonstrate the validity of
the FVTD theory. The aforementioned examples demonstrate both
the long-term stability of the simulation and the validity of the de-
signed boundary operators for perfectly conducting and dielectric in-
terfaces. For three-dimensional curvilinear domains, the results are not
as promising, as discussed next.

The propagation of an electromagnetic wave in a cylindrical wave-
guide of radius x is the subject of the following discussion; the wave-
guide is filled with free-space. The domain spans 10 × 20 × 100 cells
in ρ , φ , and z , respectively. The domain is assumed to be periodic
in z and the electromagnetic wave is initialized with the TE 11 time-
harmonic mode of frequency ω = 2π r/s . In the radial direction, the
signal is sampled at twenty points per wavelength. For this study, let
c = 1 m/s , δρ = 0.1 m , δφ = 2π/20 r , δz = 5λz/100 = 0.05229 m , and
δt = 0.01269 s . Figure 4 shows the electric field distribution among var-
ious planes within the guide. This figure serves as a qualitative check
by showing that the mode has been properly set up within the guide.
Next consider Figures 5 and 6, which show all six components of the
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Figure 2. Electric field inside a perfectly conducting cavity.

Figure 3. Electric field inside a partially filled dielectric cavity.
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Figure 4. The electric field within the cylindrical waveguide.

electromagnetic signal as a function of radial cell distance at time steps
200 and 2000, respectively. Clearly, the solver is able to predict the
basic field phenomenology within the guide. Upon closer examination
of the data, however, one notes the small effect of numerical dissipation
in the early time and large dissipative effects in the late time. Note:
After 2000 times steps, the total energy in the electromagnetic wave
has decreased by a factor of three. The highly dissipative nature of
the computed solution is consistent with the theoretical performance
of windward schemes. A second effect is also made manifest in the
data: A non-zero longitudinal electric field. The longitudinal com-
ponent is indeed small relative to its transverse counterparts, which
implies that solver has set up a quasi-TE mode rather than a pure
TE mode. The generation of this non-physical component is due to
the grid and its corresponding metrics. Since each cell is not a par-
allelepiped, the numerically computed metrics are only second-order
accurate (for parallelepiped cells, the metrics are computed exactly.)
Hence, the nonlinear terms of the metrics are not captured and the
corresponding solution is corrupted by metric induced errors.

To demonstrate the effect of grid decoupling due to the four-stage
Runge-Kutta integrator, we provide Figure 7. In this case, a perfectly
conducting post is placed between two perfectly conducting plates
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Figure 5. The field components of E and H within the cylindrical
waveguide at t = 200δt . The dotted lines are the analytical solution;
the solid lines are the computed solution.

Figure 6. The field components of E and H within the cylindrical
waveguide at t = 2, 000δt . The dotted lines are the analytical solution;
the solid lines are the computed solution.
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Figure 7. Near-field electromagnetic field data about a post. The
striping of the data suggests strong grid decoupling.

of height 0.4 mm . (Even though the solver is simulating a three-
dimensional geometry, the plates image this post continuously to in-
finity, thus reducing the dimensionality of the solution to two.) The
post occupies one cell in its cross-section and is excited by a uniform
plane wave traveling at the speed of light. A scattered field formu-
lation is used for this scenario in which δx = 0.2 cm , δy = 0.2 cm ,
δz = 0.0667 cm , and δt = .1742 ps . Per Figure 7, the grid decoupling
effect is obviously present in the near-field data. In the far-field, the
solver predicts the anticipated cylindrical wave.

4. CONCLUDING REMARKS

This paper has provided a rigorous treatment of the nodally collocated
FVTD methodology. The treatment clearly demonstrates how one can
design the reconstruction formulas for both low and high-order, accu-
rate solutions – the accuracy is partially contingent upon the discrete
approximation of the derivative of the primitive vector. Moreover,
from this same primitive vector, suitable boundary operators can be
equally designed. Finally, for curvilinear grids, the analysis herein
clearly shows the role of the metric calculation on solution accuracy.
Since numerous works have discussed stability, dispersion errors and
dissipation errors for this scheme (e.g., see [20]), such a discussion has
not been provided.

Instead of adjusting the numerical parameters in such a way to yield
excellent results or to select examples that only show only the positive
attributes of the scheme, we have chosen to use typical parameters and
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common geometries to demonstrate certain deficiencies of the scheme.
These deficiencies include strong dissipation errors of windward based
stencils, metric errors associated with non-parallelepiped cells and in-
tegrator induced grid decoupled solutions.

Some solutions exist that minimize or eliminate the aforementioned
shortcomings. For example, in the work of Gaitonde, Shang and Young
[7], it was demonstrated that high-order, central implicit stencils in
conjunction with spatial filters can significantly reduce dissipation ef-
fects, as compared with 3WB1 stencils. The filters serve two purposes:
1) To stabilize the boundary operators and 2) inhibit grid decoupled
solutions. (It is not clear at this time, however, if decoupled solutions
due to the RK4 integrator are eliminated with these same filters.) Un-
fortunately, these filters increase computational overhead and some
question remains whether the efficiency of the final scheme has been
compromised.

For curvilinear grids, it appears at this time that second-order met-
ric computations will not suffice. Although, a high-order metric com-
putation is admissible in theory, the practical implications of such a
computation still needs to be studied.

APPENDIX

Consider some arbitrary surface S(ξ) and its corresponding directed
area A(ξ) , which is defined as

A(ξ) =
∫

S(ξ)
∇ξJdηdζ (56)

Decomposing ξ into its linear and non-linear parts ξl and ξn , respec-
tively, assuming that the non-linear part is negligible, and recognizing
that ∇ξl is constant, we obtain

A(ξ) ≈ ∇ξl

∫
S(ξ)

Jdηdζ (57)

The integration of this area from ξ1 to ξ2 yields,∫ ξ2

ξ1

A(ξ)dξ ≈
∫ ξ2

ξ1

∇ξl

∫
S(ξ)

Jdηdζdξ = V ∇ξl. (58)

Hence,

∇ξl ≈
δξAa

ξ

V
(59)
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where

Aa
ξ =

1
δξ

∫ ξ2

ξ1

A(ξ)dξ. (60)

Here Aa
ξ is the average directed surface area in the direction of ξ

within the volume V . We close by noting that if the grid is a stretched
Cartesian grid, the stretching is automatically incorporated into the
definition of the area’s average value.
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