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1. INTRODUCTION

The direct integration of field equations is first treated in this work
with the aid of a scalar-vector Green’s theorem. In such a treatment,
potential functions are not needed, but the result can be interpreted
in terms of these functions. The advantage of this approach is to
eliminate several concepts that are often difficult for students to di-
gest, such as the double layer of charges to characterize an aperture
electrostatic field, the fictitious magnetic surface current to model a
tangential electric field distribution, and the gauge conditions for the
potential functions in magnetostatics and electrodynamics.



340 Tai

Our method follows closely the original work of Stratton and Chu
[1]. We first derive a scalar-vector Green’s theorem with no restriction
placed on the two functions involved in the theorem. The theorem is
then applied separately to electrostatics, magnetostatics, and finally
to electrodynamics. The result of the last case is identical to the one
originally formulated by Stratton and Chu. They are also equivalent to
the expressions obtained by Schelkunoff [2] with the aid of equivalence
principle.

When the tangential components of the electromagnetic field are
discontinuous on the diffracting surface, Stratton and Chu deliberately
added a line integral to the expression for the electric field and another
one to the expression for the magnetic field to make them satisfy Max-
well’s equations. This amendment was criticized by Schelkunoff, who
claimed that his formulas were stronger. In fact, as we show in this
work, Schelkunoff’s expressions are equivalent to Stratton and Chu’s;
hence, his formulas are also restricted to continuous surface field dis-
tributions. A superior formulation is due to Franz [3], who derived his
formulas with the aid of the free-space magnetic dyadic Green func-
tion. We present a detailed comparison between Franz’s formulas and
Stratton and Chu’s, and show that the line integrals added by Stratton
and Chu are contained inherently in Franz’s formulas.

In this article the new differential operational notations for the di-
vergence, ∇· , and the curl, ∇× , together with the long-established op-
erational notation for the gradient, ∇ , will be used. The rationale
for adopting the new notation for the divergence and the curl is ex-
plained thoroughly in [4], particularly from the historical point of view
as discussed in Chapter 8.

2. SCALAR-VECTOR GREEN’S THEOREM

The basic theorem needed in the first part of this work is a scalar-
vector Green’s theorem. The theorem involves one scale function and
one vector function, hence its name. The derivation of this theorem
from a vector-dyadic Green’s theorem is found in Appendix 1. The
theorem states
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∫∫

V

∫
[(∇· F)∇f + F∇· ∇f + f∇×∇× F]dV

=
∫
©
∫

S

[(n̂ · F)∇f + (n̂ × F) ×∇f + (n̂ ×∇× F)f ]dS (1)

where f is a scalar function and F is a vector function, and all the
functions are considered to be integrable in V and on S , including
the generalized functions. We can now apply this theorem to integrate
the field equations for various cases.

3. ELECTROSTATICS

We consider a region with a volume charge density ρ and an imaginary
closed surface Si in which there may be another charge distribution ρi

and/or a scattering body B as shown in Fig. 1. The basic equations in

Figure 1. A charge distribution ρ inside a surface Se in the neigh-
borhood of an imaginary surface Si .

electrostatics for the E field in an air medium are

∇· E =
ρ

ε0
, (2)

∇× E = 0. (3)

Now we apply (1) to integrate (2) under the constraint of (3) with
F = E and f = g0 where g0 denotes the free-space scalar Green’s
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function for a scalar Poisson’s equation known to be

g0 = g0(R,R′) =
1

4π|R − R′| . (4)

The function g0 satisfies the equation

∇· ∇g0 = −δ(R − R′), (5)

where δ(R − R′) denotes a three-dimensional delta function. The
function g0 is singular at R = R′ . It is the only location where the
function and its derivatives do not exist, but the integral of −E∇· ∇g0

or Eδ(R − R′) exists and is given by
∫∫

V

∫
Eδ(R − R′) dV =

{
E(R′), V ∈ R′

0, V /∈ R′.
(6)

By applying (1) to the region occupied by ρ with the aid of (2), (3),
and (5) we obtain

∫∫

Ve

∫
ρ

ε0
∇g0 dV =

∫
©
∫

Se

[(n̂0 · E)∇g0 + (n̂0 × E) ×∇g0] dS. (7)

The surface Se encloses the volume Ve occupied by ρ . By applying
(1) to the region exterior to Se and Si and bounded by a surface at
infinity S∞ we obtain

−E(R′) = −
∫
©
∫

Se

[(n̂0 · E)∇g0 + (n̂0 × E) ×∇g0] dS

−
∫
©
∫

Si

[(n̂0 · E)∇g0 + (n̂0 × E) ×∇g0] dS. (8)

The integral evaluated at S∞ vanishes if we assume that E varies as
1/R2 when R approaches infinity. Because of the continuity of the
normal and tangential components of the field across Se , an elimina-
tion of the surface integral on Se between (7) and (8) yields

E(R′) =
∫∫

Ve

∫
ρ

ε0
∇g0dV +

∫
©
∫

Si

[(n̂0 · E)∇g0 + (n̂ × E) ×∇g0] dS. (9)
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Now,
∇g0 = −∇′g0, (10)

and
∇′g0 × (n̂0 × E) = ∇×′g0(n̂0 × E), (11)

where ∇′ and ∇×′ denote the gradient and the curl operators defined
with respect to the primed variable pertaining to R′ , the site of the
field under consideration, (9) can therefore be written in the form

E(R′) = −∇′
∫∫

Ve

∫
1
ε0

ρg0 dV −∇′
∫
©
∫

Si

(n̂0 · E)g0 dS

+ ∇×′
∫
©
∫

Si

(n̂0 × E)g0 dS. (12)

This is the integral expression of the electric field we are seeking. If
we denote

1
ε0

∫∫

Ve

∫
ρg0 dV +

∫
©
∫

Si

(n̂0 · E)g0 dS = Φes(R′), (13)

∫
©
∫

Si

(n̂0 × E)g0 dS = Aes(R′), (14)

then
E(R′) = −∇′Φes(R′) + ∇×′Aes(R′). (15)

Equation (15) shows E(R′) can be evaluated from the differentials
of two potential functions, one representing an electrostatic potential,
Φes , and another representing an electrostatic vector potential, Aes .
For those who prefer to derive integral expressions by applying the
equivalence principle, a topic to be mentioned in a later section, the
term n̂×E in (12) would be interpreted as the equivalent surface mag-
netic current density. To introduce a magnetic current in electrostatics
would be very awkward indeed.

The classical treatment of this problem was usually done with the
aid of a scalar potential theory. According to this approach, if a scalar
potential function φ is defined at the very beginning such that

E = −∇φ, (16)
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then φ satisfies the scalar Poisson’s equation

∇· ∇φ = − ρ

ε0
. (17)

The integral expression of (17) for the problem under consideration is
found in many books, for example [1, Sec. 3.4] and [5]. The result is

φ(R′) =
1
ε0

∫∫

Ve

∫
ρg0 dV −

∫
©
∫

Si

(n̂0 · ∇φ)g0 dS

+
∫
©
∫

Si

(n̂0 · ∇g0)φ dS. (18)

The last term in (18) is commonly interpreted as the potential due to
a double layer of charge. Since such a layer does not exist in the actual
problem, this interpretation appears to be very difficult for students
to appreciate. By taking a gradient of (18) in the primed system and
with the aid of the identity

∇×′
∫
©
∫

Si

(n̂0 × E)g0 dS = −∇′
∫
©
∫

Si

(n̂0 · ∇g0)φ dS, (19)

our (12) can be recovered. The main feature of the present treatment
is a more direct approach of finding E without introducing the poten-
tial function. Equation (19) also indicated that the potential functions
are not unique. In our presentation, an electrostatic vector potential
appears quite naturally in the formulation that is absent in the con-
ventional theory using φ .

4. MAGNETOSTATICS

We consider a similar problem shown in Fig. 1 with ρ replaced by J,
a solenoidal electric current distribution. The basic equations for the
magnetostatic H field with J placed in air are given by

∇× H = J, (20)
∇· H = 0. (21)
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We now apply (1) to this problem with F = H and f = g0 . By
following steps similar to those of the previous case we obtain

H(R′) =
∫∫

Ve

∫
g0∇× J dV −

∫
©
∫

Se

(n̂0 × J)g0 dS

+
∫
©
∫

Si

[(n̂0 · H)∇g0 + (n̂0 × H) ×∇g0] dS. (22)

The volume integral in (22) can be changed to

∫∫

Ve

∫
g0∇× J dV =

∫∫

Ve

∫
[∇× (g0J) −∇g0 × J] dV

=
∫
©
∫

Se

(n̂0 × J)g0 dS −
∫∫

Ve

∫
∇g0 × J dV

=
∫
©
∫

Se

(n̂0 × J)g0 dS + ∇×′
∫∫

Ve

∫
goJ dV. (23)

Substituting (23) into (22) and changing ∇g0 to −∇′g0 we obtain

H(R′) = ∇×′
∫∫

Ve

∫
g0J dV +∇×′

∫
©
∫

Si

g0(n̂0 ×H) dS −∇′
∫
©
∫

Si

g0(n̂0 ·H) dS.

(24)
This is the integral expression for H(R′) that we are seeking. If we
denote

∫∫

Ve

∫
g0J dV +

∫
©
∫

Si

g0(n̂0 × H) dS = Ams, (25)

∫
©
∫

Si

g0(n̂0 · H) dS = Φms, (26)

then
H(R′) = ∇×′Ams −∇Φms. (27)

From the point of view of potential theory Ams represents a mag-
netostatic vector potential function and Φms a magnetostatic scalar
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potential function. It is seen that a vector potential function alone
is not sufficient to formulate this problem from the point of view of
potential theory. The existence of Φms also explains why the scat-
tering of a D.C. magnetic field by a magnetic body can be treated by
a scalar potential theory [1, Sec. 4.2]. The conventional method of
finding H(R′) is to define a vector potential A first and then find the
integral expression for A. Such a presentation is found in [1, Sec. 4.15].

5. ELECTROMAGNETICS

For simplicity, we consider a harmonically oscillating electromagnetic
field for this case. The basic equations in Maxwell’s theory are

∇× E = iωµ0H, (28)
∇× H = J − iωε0E, (29)

∇· E =
ρ

ε0
, (30)

∇· H = 0, (31)
∇· J = iωρ. (32)

A time factor e−iωt is used in this work. By eliminating E or H
between (28) and (29) we obtain

∇×∇× E − k2E = iωµ0J, (33)

and
∇×∇× H − k2H = ∇× J. (34)

The wave number k in (33) and (34) is equal to ω(µ0ε0)1/2 . The
static sources in Fig. 1 are now replaced by dynamic current sources J
and Ji accompanied by charge densities ρ and ρi .

To find the integral expression for E we let

F = E, (35)

f = G0 =
eik|R−R′|

4π|R − R′| , (36)

where G0 denotes the free-space scalar Green’s function that satisfies
the equation

∇· ∇G0 + k2G0 = −δ(R − R′). (37)
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Substituting (35) and (36) into (1) and making use of (28) to (34) we
obtain

E(R′) = iωµ0

∫∫

Ve

∫
G0J dV − 1

ε0
∇′

∫∫

Ve

∫
G0ρ dV

+ iωµ0

∫
©
∫

Si

G0(n̂0 × H) dS −∇′
∫
©
∫

Si

G0(n̂0 · E) dS

+ ∇×′
∫
©
∫

Si

G0(n̂0 × E) dS, (38)

H(R′) =∇×′
∫∫

Ve

∫
G0J dV + ∇×′

∫
©
∫

Si

G0(n̂0 × H) dS

−∇′
∫
©
∫

Si

G0(n̂0 · H) dS − iωε0

∫
©
∫

Si

G0(n̂0 × E) dS. (39)

These are the same equations obtained previously by Stratton and Chu
except that we have presented them in a slightly different form with
the differential operators ∇′ and ∇×′ placed outside the integrals. For
convenience, the surface integrals in (38) and (39) will be designated
as the diffraction integrals.

From the point of view of potential theory if we denote

Ae =
∫∫

Ve

∫
G0J dV +

∫
©
∫

Si

G0(n̂0 × H) dS, (40)

φe =
1
ε0

∫∫∫
G0ρ dV +

∫
©
∫

Si

G0(n̂0 · E) dS, (41)

Am =
∫
©
∫

Si

G0(n̂0 × E) dS, (42)

φm =
∫
©
∫

Si

G0(n̂0 · H) dS, (43)

then

E(R′) = iωµ0Ae −∇′φe + ∇×′Am, (44)
H(R′) = −iωε0Am −∇′φm + ∇×′Ae. (45)
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It can be shown that when the fields are continuous on Si we have the
gauge condition

∇· ′Ae = iωε0φe, (46)
∇· ′Am = −iωµ0φm, (47)

Then (44) and (45) can be written in the form

E(R′) = iωµ0Ae +
i

ωε0
∇′∇· ′Ae + ∇×′Am, (48)

H(R′) = −iωε0Am − i

ωµ0
∇′∇· ′Am + ∇×′Ae. (49)

The surface integrals in (48) and (49) are the same expressions obtained
by Schelkunoff [2] using the method of potentials with the aid of the
equivalence principle [6]. The function F in his expressions, (18) and
(19) of [2], corresponds to our −Am , and his A corresponds to the
surface integral in our Ae . Schelkunoff uses eiωt as the time factor in
contrast to our e−iωt , which is also used by Stratton and Chu. When
the electromagnetic fields, E and H, are discontinuous on Si , (46)
and (47) are no longer applicable. Schelkunoff’s formulas also become
inapplicable, since they are derived under these conditions.

For discontinuous H field on Si let us consider the surface integral
in (40). Its divergence is

∇· ′
∫
©
∫

Si

G0(n̂0 × H) dS =
∫
©
∫

Si

n̂0 · (∇G0 × H) dS

=
∫
©
∫

Si

n̂0 · [∇×(G0H) − G0∇× H] dS. (50)

Let C be the line contour separating the closed surface Si into two
open surfaces S1 and S2 across which H is discontinuous. Then

∫
©
∫

Si

n̂0 · ∇× (G0H) =
∮

C
G0(H1 − H2) · d�,

and ∫
©
∫

Si

n̂0 · (−G0∇× H) dS = iωε0

∫
©
∫

Si

G0(n̂0 · E) dS,
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hence

∇· ′Ae = iω

∫∫

V

∫
G0ρ dv + iωε0

∫
©
∫

Si

G0(n̂0 · E) dS

+
∮

C
G0(H1 − H2) · d�1

= iωε0φe +
∮

C
G0(H1 − H2) · d�1. (51)

Similarly, when E is discontinuous on Si

∇· ′Am = −iωµ0φm +
∮

C
G0(E1 − E2) · d�1. (52)

Substituting the functions φe and φm from (51) and (52) into (44)
and (45), we obtain

E(R′) = iωµ0Ae +
i

ωε0
∇′∇· ′Ae + ∇×′Am

+
i

ωε0
∇′

∮
C

G0(H1 − H2) · d�1, (53)

H(R′) = − iωε0Am − i

ωµ0
∇′∇· ′Am + ∇×′Ae

− i

ωµ0
∇′

∮
C

G0(E1 − E2) · d�1. (54)

Because Ae and Am satisfy the differential equations

∇· ′∇′Ae + k2Ae = 0,

∇· ′∇′Am + k2Am = 0,

when R′ is not located in Si , the first two terms in (53) and (54) can
be changed to

iωµ0Ae +
i

ωε0
∇′∇· ′Ae = − iωµ0

k2
∇· ′∇′Ae +

i

ωε0
∇′∇· ′Ae

=
i

ωε0
(∇′∇· ′Ae −∇· ′∇′Ae)

=
i

ωε0
∇×′∇×′Ae, (55)
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and
−iωε0Am − i

ωµ0
∇′∇· ′Am =

−i

ωµ0
∇×′∇×′Am. (56)

Hence

E(R′) = ∇×′Am +
i

ωε0
∇×′∇×′Ae −

i

ωε0
∇′

∮
C

G0(H1 − H2) · d�1, (57)

H(R′) = ∇×′Ae −
i

ωµ0
∇×′∇×′Am +

i

ωµ0
∇′

∮
C

G0(E1 − E2) · d�1. (58)

Equations (57) and (58) are the expressions for E and H derived from
Stratton and Chu’s formulas when the fields are discontinuous on Si .
Since it is obvious that ∇· ′E(R′) and ∇· ′H(R′) do not vanish, the
two authors deliberately add a line integral

i

ωε0
∇′

∮
C

G0(H1 − H2) · d�1 (59)

to (57) and another line integral

− i

ωµ0
∇′

∮
C

G0(E1 − E2) · d�1 (60)

to (58) so the resultant expressions would satisfy Maxwell’s equations.
Actually they consider S1 to be an aperture and S2 an opaque screen
with E2 and H2 equal to zero on the screen. The inclusion of the
line integrals so added was criticized by Schelkunoff [2, p. 51], and he
stated that

“More than the Green’s formula is needed to identify n̂×H and
E × n̂ with equivalent sources on (S) . Thus, in practice, we
really need the stronger form of the theorem given by (18) and
(19).”

He apparently did not realize that his formulas are restricted to con-
tinuous fields on Si obtained under the gauge conditions specified by
(46) and (47). Under these conditions his formulas are equivalent to
Stratton and Chu’s diffraction integrals. His criticism has therefore no
foundation. A superior formulation without the defects contained in
Stratton and Chu’s and Schelkunoff’s formulations is due to Franz [3].
This is described in the following section.
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6. FRANZ’S ORIGINAL FORMULAS AND THEIR
DERIVATION INCLUDING THE SOURCE TERMS

In Franz’s original work he considers the integration of Maxwell’s equa-
tions in a source-free region outside of Si in Fig. 1 with J = 0 , and
ρ = 0 in (29) and (30). He then applies the method of dyadic Green
function to integrate the homogeneous Maxwell’s equations, namely

∇×E = iωµ0H (61)

and
∇×H = −iωε0E. (62)

The dyadic Green function that he used is what we designate nowadays
as the free-space magnetic dyadic Green function [7, p. 60] defined by

¯̄Gm0(R,R′) = ∇×
[
¯̄IG0

]
= ∇G0 × ¯̄I, (63)

where G0 is the same scalar Green function defined by (36) and ¯̄I is
the idem factor. He then applies the vector-dyadic Green’s theorem of
the form ∫∫

V

∫ [
F · ∇×∇× ¯̄G − (∇×∇× F) · ¯̄G

]
dV

=
∫
©
∫

Si

n̂0 ·
[
F ×∇× ¯̄G + (∇× F) × ¯̄G

]
dS (64)

to integrate (61) and (62) with F = E or H and ¯̄G = ¯̄Gm0 . He did
not provide many details in his article but merely presented his result
as follows:

Ef (R′) = ∇×′Am +
i

ωε0
∇×′∇×′Ase, (65)

Hf (R′) = ∇×′Ase −
i

ωµ0
∇×′∇×′Am, (66)

where Am is the same function defined by (42) and Ase is the surface
integral in (40), that is,

Ase =
∫
©
∫

Si

G0(n̂0 × H) dS. (67)
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No volume integral occurs in his formulation. For completeness we
have filled in the details of Franz’s work in Appendix 2. In order to
compare Franz’s with Stratton and Chu’s formulation we also include
the sources J and ρ . The proper dyadic Green function to integrate
the equation for E is the free-space electric dyadic Green function
defined by

¯̄Ge0(R,R′) =
(

¯̄I +
1
k2

∇∇
)

G0. (68)

The expression for E can also be obtained by integrating the equation
for H using ¯̄Gm0 . The integration of Maxwell’s equations using ¯̄Ge0

was briefly introduced by the present author on two previous occasions
[8, 9]. The same method was used by Sancer [10], whose results will be
quoted later. The detailed analysis of Franz’s formulation and ours are
given in Appendix 2. We are using the notation Ef to denote Franz’s
diffraction integrals as in (65) and (66) and the complete formulas
including the contributions by sources J and ρ as EF and HF ,
then one finds

EF (R′) = ∇×′Am +
i

ωε0
∇×′∇×′Ae, (69)

HF (R′) = ∇×′Ae −
i

ωµ0
∇×′∇×′Am, (70)

where Ae and Am are the functions defined previously by (40) and
(41). Comparing (69) and (70) with Stratton and Chu’s formulas we
find

EF = Esc +
i

ωε0
∇′

∮
C

G0(H1 − H2) · d�, (71)

HF = Hsc −
i

ωµ0
∇′

∮
C

G0(E1 − E2) · d�. (72)

For clarity, we have used the subscript “sc” to denote Stratton and
Chu’s expressions. It is evident that Franz’s formulas thus derived are
superior because they are applicable to continuous or discontinuous
distribution of the fields on Si and they do satisfy Maxwell’s equations.
It should be mentioned that (71) and (72) are identical to the formulas
obtained independently by Sancer [10, Eqs. (2.24) and (2.25)] based
also on the method of ¯̄Ge0 . He did not convert them to a compact
form as described by (69) and (70). His article contains much more
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useful information not covered here. As a whole we must give credit to
Franz for his elegant formulation of the vectorial Huygens’s principle.

The reader may be interested to note that by taking the curl of (71)
and (72) we find

∇× Esc = ∇× EF = iωµ0HF (73)

and
∇× Hsc = ∇× HF = J − iωε0EF . (74)

In other words, it is possible to find EF and HF from Hsc and Esc ,
respectively. This feature was pointed out in a previous communication
[9] without the detailed analysis as found in the present article.

7. CONCLUSION

In this work we have studied quite thoroughly the integration of field
equations in electrostatics, magnetostatics, and electromagnetics, first
based on a scalar-vector Green’s theorem and then by a vector-dyadic
Green’s theorem for the electromagnetic equations. Some deficien-
cies in past works of Stratton and Chu and of Schelkunoff have been
pointed out. The superior nature of Franz’s formulation is emphasized.
This investigation demonstrates clearly that the so-called equivalence
principle does not serve a useful purpose in the teaching of electromag-
netics.

It is worth mentioning that for physically realizable problems the
line integrals added by Stratton and Chu are of no concern to us
nowadays as a result of Meixner’s edge condition [11]. Collin [12,
Sec. 1.5] has examined very carefully a canonical problem using cylin-
drical waves to demonstrate the continuity of E and H across the
boundary of a conducting wedge. When approximate distribution is
used, such as the one that occurred in physical optics approximation
where S1 corresponds to a lit region and S2 to a completely shad-
owed region, then the line integrals must be added to both Stratton
and Chu’s and Schelkunoff’s formulas while Franz’s formulas cover
them automatically. A remark made by the master physicist Arnold
Sommerfeld in his recapitulation of Franz’s formulation [13, p. 328]
may be of interest in this regard:

“The vectorial Huygen’s principle is no magic wand for the solu-
tion of boundary value problems, but it is of interest as a gener-
alization of the time-honored idea of Christian Huyens.”



354 Tai

The classical work of Levine and Schwinger [14] to treat the diffraction
of a plane electromagnetic wave by a circular hole in a conducting
screen as a boundary-value problem attests the master’s view.

APPENDIX 1: A SCALR-VECTOR GREEN’S THEOREM

This theorem can be derived in several different ways. The most effi-
cient one is to use a vector-dyadic Green’s theorem of the second kind
[4, p. 125] in the form∫∫

V

∫ [
F · ∇×∇× ¯̄G − (∇×∇× F) · ¯̄G

]
dV

= −
∫
©
∫

S

n̂ ·
[
F ×∇× ¯̄G + (∇× F) × ¯̄G

]
dS. (A.1)

This theorem is also needed in explaining Franz’s theory in Appendix
2. It is partly for this reason we adopt this approach so that some
rudimentary dyadic analysis can be introduced. In (A.1), F is a vector
function and ¯̄G is a dyadic function. Let

¯̄G = f ¯̄I, (A.2)

where f is a scalar function and where ¯̄I denotes an idemfactor de-
fined by

¯̄I =
∑

i

x̂ix̂i, (A.3)

in a rectangular coordinate system or any orthogonal curvilinear sys-
tem. The idemfactor has the property

F · ¯̄I = ¯̄I · F = F. (A.4)

In the following analysis we also need a dyadic identity

a · (b × ¯̄c) = (a × b) · ¯̄c = −b · (a × ¯̄c). (A.5)

In this identity the dyadic function ¯̄c must be kept at the posterior
position unless it is a symmetric dyadic function. The gradient, diver-
gence, and curl of ¯̄G are then given by

∇ ¯̄G = ∇
(
f ¯̄I

)
= (∇f) ¯̄I, (A.6)

∇· ¯̄G = ∇·
(
f ¯̄I

)
= ∇f · ¯̄I = ∇f, (A.7)

∇× ¯̄G = ∇×
(
f ¯̄I

)
= ∇f × ¯̄I, (A.8)
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and

n̂ ·
(
F ×∇× ¯̄G

)
= (n̂ × F) · ∇× ¯̄G = (n̂ × F) ·

(
∇f × ¯̄I

)
= (n̂ × F) ×∇f,

(A.9)

F · ∇×∇× ¯̄G = F ·
(
∇∇· ¯̄G −∇· ∇ ¯̄G

)

= F · ∇∇f − F∇· ∇f = ∇· (F∇f) −∇· F∇f − F∇· ∇f.

(A.10)

One can easily recognize that these identities are the dyadic version of
similar identities in vector analysis. The volume integral of the term
∇· (F∇f) in (A.10) can be converted into a surface integral by means
of the dyadic divergence theorem, that is,∫∫

V

∫
∇· (F∇f) dV =

∫
©
∫

n

(n̂ · F)∇f dS. (A.11)

Now substituting all the relevant functions into (A.1) we obtain the
desired scalar-vector Green’s theorem:∫∫

V

∫
[(∇· F)∇f + F∇· ∇f + f∇×∇× F] dV

=
∫
©
∫

S

[(n̂ · F)∇f + (n̂ × F) ×∇f + (n̂ ×∇× F)f ] dS. (A.12)

APPENDIX 2: FRANZ’S DIFFRACTION INTEGRALS
AND THE COMPLETE EXPRESSIONS OF THE
ELECTROMAGNETIC FIELD

In Franz’s original work he considers only the homogeneous Maxwell’s
equations without the sources in the region of integration bounded by
Si and S∞ (Fig. 1). They are

∇× E = iωµ0H, (A.13)
∇× H = −iωε0E. (A.14)

By eliminating E or H we obtain

∇×∇× E − k2E = 0, (A.15)
∇×∇× H − k2H = 0. (A.16)



356 Tai

The vector-dyadic Green’s function of the second kind stated by (A.1)
with n̂ = −n̂0 on Si becomes∫∫

V

∫ [
F · ∇×∇× ¯̄G − (∇×∇× F) · ¯̄G

]
dV

=
∫
©
∫

Si

[
(n̂0 ×∇× F) · ¯̄G + (n̂0 × F) · ∇× ¯̄G

]
dS. (A.17)

We have already deleted the surface integral at infinity because the
functions F and ¯̄G to be considered later satisfy the radiation condi-
tion.

Now we let

F = E, (A.18)
¯̄G = ¯̄Gm0 = ∇×

(
G0

¯̄I
)

= −∇×′
(
G0

¯̄I
)

= −∇′G0 × ¯̄I, (A.19)

where ¯̄I denotes an idemfactor and the function ¯̄Gm0 satisfies the
equation

∇×∇× ¯̄Gm0 − k2 ¯̄Gm0 = ∇×
[
¯̄Iδ(R − R′)

]
. (A.20)

Then

∇× ¯̄Gm0 = ∇×∇×
(
G0

¯̄I
)

= ∇∇·
(
G0

¯̄I
)
−∇· ∇

(
G0

¯̄I
)

= ∇∇G0 −∇· ∇G¯̄I
= ∇′∇′G0 −∇· ′∇′G0

¯̄I. (A.21)

Substituting these functions into (A.17) we obtain∫∫

V

∫
E · ∇×

(
¯̄Iδ

)
dV

=
∫
©
∫

Si

[
−iωµ0(n̂0 × H) ·

(
∇′G0 × ¯̄I

)

+ ∇′∇′G0 · (n̂0 × E) −∇· ′∇′G0(n̂0 × E)
]
dS

=
∫
©
∫

Si

[iωµ0∇′G0 × (n̂0 × H)

+ ∇′∇· ′G0(n̂0 × E) −∇· ′∇′G0(n̂0 × E)] dS

=
∫
©
∫

Si

[iωµ0∇×′G0(n̂0 × H) + ∇×′∇×′G0(n̂0 × E)] dS. (A.22)
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The volume integral in (A.22) can be changed to
∫∫

V

∫
E · ∇×

(
¯̄Iδ

)
dV =

∫∫

V

∫ [
∇· (E × ¯̄Iδ) + ¯̄Iδ · ∇×E

]
dS

= ∇×′E = iωµ0H(R′). (A.23)

The integral involving the divergence term in (A.23) vanishes as a
result of the dyadic divergence theorem. We have thus obtained the
celebrated formula of Franz for the H field:

H(R′) = ∇×′
∫
©
∫

Si

G0(n̂0 ×H) dS − i

ωµ0
∇×′∇×′

∫
©
∫

Si

G0(n̂0 ×E) dS. (A.24)

By integrating the equation for H also using ¯̄Gm0 we obtain

E(R′) = ∇×′
∫
©
∫

Si

G0(n̂0 ×E) dS +
i

ωε0
∇×′∇×′

∫
©
∫

Si

G0(n̂0 ×H) dS. (A.25)

In the text, these expressions are denoted by Hf and Ef , (65) and
(66). We are not certain whether Franz carried out the analysis we do
here because he did not supply the details in his paper. We have used
very freely the vector and dyadic identities given in [4, Appendix B]
omitting the derivations.

In order to compare Stratton and Chu’s or Schelkunoff’s formula
with Franz’s we need the complete expressions for E and H including
the sources located outside of Si . The equations for E and H are
then given by (33) and (34). We can still use ¯̄Gm0 to integrate the
equation for H , which is now given by

∇×∇× H − k2H = ∇× J. (A.26)

The result yields

E(R′) =
∫∫∫ (

iωµ0G0J − 1
ε0
∇′G0ρ

)
dV + ∇×′

∫
©
∫

Si

G0(n̂0 × E) dS

+
i

ωε0
∇×′∇×′

∫
©
∫

Si

G0(n̂0 × H) dS. (A.27)
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This expression can also be found by integrating the equation for E
given by

∇×∇× E − k2E = iωµ0J, (A.28)

with the aid of the free-space electric dyadic Green function defined by

¯̄Ge0 =
(

¯̄I +
1
k2

∇∇
)

G0. (A.29)

In fact, this is what Sancer [10] did. The expression for H(R′) ob-
tained by integrating (A.26) with ¯̄Ge0 yields

H(R′) =∇×′
∫∫∫

G0JdV + ∇×′
∫
©
∫

Si

G0(n̂0 × H) dS

− i

ωε0
∇×′∇×′

∫
©
∫

Si

G0(n̂0 × E) dS. (A.30)

In the text, we denote (A.27) and (A.30) by EF and HF respectively.
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