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1. INTRODUCTION

The electromagnetic inverse scattering problem [l–4] is to recover infor-
mation concerning some inaccessible region from the scattered electro-
magnetic fields measured outside. It has been one of the most challeng-
ing research topics in recent years due to its considerable practical im-
portance in various areas of technology [1–14] such as non-destructive
evaluation, subsurface and ground-penetrating radar, geophysical re-
mote sensing, medical imaging, seismology and target identification
etc. However, it is difficult to solve because of its ill-posedness and
nonlinearity [1–4, 15–17]. It is the multiple scattering effects that
make the electromagnetic inverse scattering problem inherently non-
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linear while contaminated and insufficient measuring data result in the
ill-posedness.

Much attention has been paid to developing the inversion algorithms
and a variety of algorithms have been proposed. Generally, they fall
into two classes, namely the analytic solution and the numerical solu-
tion.

Most of the analytic inversion algorithms [18–25] deal with one di-
mension problem. They usually make use of some approximations such
as the physical optics approximation [19–20], the Born and Rytov ap-
proximation [21, 26], etc., to simplify the problem. These inversion
algorithms include the layer-stripping algorithm [2, 14], the method
of characteristics [2, 14, 22], the Gel’fand-Levitan integral equation
method [23] and the Marchenko integral equation method [23–25],
etc. However, we hardly encounter situations where a one-dimensional
model can practically be used. Moreover, the simplicity of these algo-
rithms in one dimension is not preserved in higher dimension. Con-
sequently, they have only theoretical significance but limited practical
applications.

In contrast, the numerical inversion algorithms [27–52] solve the
electromagnetic inverse problem numerically and iteratively. They can
deal with not only one-dimensional but higher dimensional problems.

The electromagnetic inverse problem can be transferred into an op-
timization problem. Correspondingly, the numerical inversion algo-
rithms can be further classified into two categories according to the
optimization algorithms adopted. The first is the local inversion algo-
rithm and the second is the global inversion algorithm.

Most of the previous numerical inversion algorithm belong to the
first category. The prominent algorithms of this category include the
Born iterative method (BIM) [27, 28], the distorted Born iterative
method (DBIM) [29, 30], the Newton-Kantorivitch method (NKM)
[31–33], the Leven-berg-Marquardt algorithm [34–36], local shape func-
tion (LSF) method [37–40], the modified gradient method (MGM)
[41–43], the pseudoinverse transformation method [44], the dual space
method [4] and the nonlinear parameter optimization method [45, 46],
etc.

The above mentioned local inversion algorithms are gradient based.
They are restricted to relatively small gradients of the object functions
since the optimization methods adopted in them are local. Thus, they
only converge to the true profile under certain conditions, otherwise,
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they may be trapped into a local extreme or even diverge. For exam-
ple, the BIM and DBIM can only give convergent solutions when the
scatterer is weak while the Newton-Kantorivitch method demands a
good starting point. A priori is crucial. Unfortunately, such a priori
knowledge is not always available or accurate enough.

More recently, a new class of inverse scattering algorithms has
emerged. They are the global inversion algorithms [47–52] based on
genetic algorithms (GAs) [53–56]. GAs are a set of slowly converging
probabilistic global optimization methods based on genetic recombina-
tion and evolution in nature. They operate on a randomly generated
population in the search space simultaneously and perform a global
optimization by the three genetic operations, i.e., selection, crossover
and mutation. The GAs are less prone to converge to a local optimum
than the gradient based algorithms even when the initial guess is far
away from the exact one because they are stochastic and global in na-
ture. GAs have been widely used in solving electromagnetic problems
[57–61]. However, its application in solving electromagnetic inverse
problem is new and incomplete.

Chiu and Liu [47] tried to reconstruct the image of a perfectly con-
ducting cylinder by the standard genetic algorithm (SGA). However,
the reported results are dubious [48, 49]. Qing and Lee [48] dealt with
the same problem by RGA. RGA was also used to solve the microwave
imaging problem of multiple perfectly conducting cylinders [49, 50].
Xiao et al. [51] solved the same problem by micro genetic algorithm
(MGA) coupled with Powell method, while Meng et al. [52] dealt with
it by SGA incorporated with local shape function (LSF) method.

The GA-based global inversion algorithms offer many advantages
over the local inversion algorithms such as strong search ability, sim-
plicity, versatility, high level of robustness and insensitiveness to ill-
posedness. However, they also exhibit several disadvantages among
which the unendurable long inversion time is the most notorious.

In this paper, a novel method, the RGA-NKM, is proposed for mi-
crowave imaging of parallel perfectly conducting cylinders with or with-
out the effect of random noise. It is developed to reduce the untoler-
ably long inversion time of RGA while keeping the merits of RGA.
The main idea of the RGA-NKM is to perform a Newton-Kantorivitch
type search for the local optimum after the genetic operations in each
genetic evolution to improve the local search ability of RGA. It begins
from an initial population which is generated randomly within the
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search space. Then, the algorithm enters into evolution loop searching
for the optimum solution. The evolution continues until the termina-
tion conditions are fulfilled. Numerical results and comparisons with
both RGA and NKM demonstrate that although the simplicity of RGA
is lost, the search ability is greatly improved and the convergence is
sped up significantly while those merits of RGA such as high level of
robustness, versatility and insensitiveness to ill-posedness are retained.

2. FORMULATION OF PROBLEM

The problem considered here is the same as that in [49] which is de-
picted in Fig. 1. R stands for receivers located on the measuring circle
Ω with radius Rmeas . O is the origin. C1 and C2 are the contours
of the two perfectly conducting cylinders. Oi is the local origin of Ci

which is an arbitrary point inside Ci . |OOi| = di . C1 and C2 are
denoted by the shape functions F1(θ) and F2(θ) respectively. The
shape functions are assumed to be trigonometric series of order N/2

Fi(θ) =
N/2∑

n=0

Ain cos(nθ) +
N/2∑

n=1

Bin sin(nθ) i = 1, 2 (1)

The two cylinders are assumed to be illuminated by TM plane wave
with time harmonic factor ejωt

Einc(r) = Einc(r)ẑ = e−jk0(x cos ϕ+y sin ϕ)ẑ (2)

where ω = 2πf is the angular frequency, r = (x, y), ϕ is the incident
angle and ẑ is the unit vector in the z direction.

Surface currents Jsj(r) = Jsj(r)ẑ, j = 1, 2 are induced on the
surface of the cylinders and the scattered electric field Escat(r) =
Escat(r)ẑ is subsequently generated

Escat(r) =
2∑

j=1

−ωµ0

4

∫

Cj

Jsj(r′)H
(2)
0 (k0|r − r′|)dr′

=
2∑

j=1

−ωµ0

4

∫ 2π

0
Jj(θ′)H

(2)
0 (k0|r − r′|)dθ′ (3)

where H
(2)
0 (·) is the second kind Hankel’s function of zero order, k0

is the wavenumber of free space
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Figure 1. Geometry of problem in this paper.

Jj(θ′) =
√

F 2
j (θ′) + F ′2

j (θ′)

· Jsj(r′)
∣∣
r′=[Fj(θ′) cos θ′±dj cos ψ,Fj(θ′) sin θ′±dj sin ψ]

where the + sign is to be employed for j = 1 and the − sign for
j = 2 .

At the surface of each cylinder, the electric field satisfies the bound-
ary condition

[
Escat(r) + Einc(r)

]
· ẑ = 0 r ∈ Ci (4)

Thus

Einc(r) =
2∑

j=1

ωµ0

4

∫ 2π

0
Jj(θ′)H

(2)
0 (k0Rij)dθ′ (5)

where
Rij =

∣∣r − r′
∣∣ r ∈ Ci, r′ ∈ Cj

The distribution of surface current is obtained after solving Eq. (5) by
point-matching method [62] with pulse basis function and Dirac delta
test function. Consequently, the scattered electric field at receivers on
Ω is

Escat(r) =
2∑

j=1

−ωµ0

4

∫ 2π

0
Jj(θ′)H

(2)
0 (k0Rj)dθ′ (6)
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where
Rj =

∣∣r − r′
∣∣ r ∈ Ω, r′ ∈ Cj

For the inverse problem, the scattered electric field Escat
meas , at receivers

on Ω are measured and known while the shape functions, i.e., the
coefficients of the trigonometric series are unknown.

A relative error function with respect to the coefficients of the
trigonometric series is defined as

fn(x) =
∥∥Escat

meas − Escat
n

∥∥ /
∥∥Escat

meas

∥∥ (7)

where

x =
[

A10 A11 · · · A1N/2 B11 B12 · · · B1N/2

A20 A21 · · · A2N/2 B21 B22 · · · B2N/2

]

∥∥Escat
meas

∥∥ =

√√√√
Nf×Na×Nr∑

j=1

[
(Escat

meas)j

]2
,

∥∥Escat
meas − Escat

n

∥∥ =

√√√√
Nf×Na×Nr∑

j=1

[
(Escat

meas)j − (Escat
n )j

]2

Escat
meas and Escat

n are Nf × Na × Nr-dimensional vectors containing
the scattered electric field measured and computed after n iterations
respectively. Nf , Na, and Nr are the total number of frequencies,
incident angles and receivers respectively.

The relative error function gives a measurement on how close the
inverted results approaches the true profile.

The inverse problem can therefore be cast into an optimization prob-
lem by minimizing the relative error function with the coefficients of
the trigonometric series being the parameters to be optimized.

3. REAL-CODED GENETIC ALGORITHM

The real-coded genetic algorithm has been successfully applied to solve
the above inverse problem [49]. For this case, the i-th creature among
the nth population takes the form

xn,i =

[
An,i

10 An,i
11 · · · An,i

1N/2 Bn,i
11 Bn,i

12 · · · Bn,i
1N/2

An,i
20 An,i

21 · · · An,i
2N/2 Bn,i

21 Bn,i
22 · · · Bn,i

2N/2

]
(8)
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Figure 2. Flow chart of RGA-NKM/RGA for microwave imaging of
two parallel perfectly conducting cylinders.

The corresponding object functions is

fn(xn,i) =
∥∥Escat

meas − Escat
n,i

∥∥ /
∥∥Escat

meas

∥∥ (9)

where Escat
n,i is a Nf × Na × Nr-dimensional vector containing the

computed scattered electric field corresponding to xn,i .
The RGA begins from an initial population of size Npop which are

generated randomly within the search space. Then, the population
enters the main GA loop for searching the optimum solution of the
problem. Scaling, stochastic binary tournament selection, one-point
crossover and mutation are involved in a GA loop. The GA loop con-
tinues until the termination conditions are fulfilled. The termination
conditions for the RGA are:

(1) min fn(xn,i) < ε , where ε is the required accuracy
(2) Maximum evolutions are used up
(3) The RGA is trapped into local minima
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The flow chart of RGA for microwave imaging of two parallel per-
fectly conducting cylinders is depicted in Fig. 2 where the block in
dotted diagram should not be included for this case.

It has been demonstrated in [49] that the RGA performs well with
respect to search ability, versatility, insensitiveness to ill-posedness, ro-
bustness and simplicity. The probabilistic nature of the RGA allows
random starting and requires almost no initial guesses. A false as-
sumption on the values of d1, d2 and Ψ is also acceptable. However,
the inversion time is untolerably long.

4. NEWTON-KANTORIVITCH METHOD

The Newton-Kantorivitch method [31, 32] has also been applied to
solve the above inverse problem.

Take variation on Eqs. (5) and (6) with respect to Jj(θ′) , Ain and
Bin , one obtains

δEinc(r) =
2∑

j=1

ωµ0

4

∫ 2π

0

[
Jj(θ′)δH

(2)
0 (k0Rij)

+ H
(2)
0 (k0Rij)δJj(θ′)

]
dθ′ (10)

δEscat(r) =
2∑

j=1

−ωµ0

4

∫ 2π

0

[
Jj(θ′)δH

(2)
0 (k0Rj)

+ H
(2)
0 (k0Rj)δJj(θ′)

]
dθ′ (11)

where

δEinc(r) = − jk0 cos(θ − ϕ)Einc(r)δFi(θ) r ∈ Ci

δH
(2)
0 (k0Rii) = − k0

Rii
H

(2)
1 (k0Rii) ·

{[
Fi(θ) − Fi(θ′) cos(θ − θ′)

]
δFi(θ)

+
[
Fi(θ′) − Fi(θ) cos(θ − θ′)

]
δFi(θ′)

}

δH
(2)
0 (k0Rij) = − k0

Rij
H

(2)
1 (k0Rij) · {[Fi(θ) ± d cos(θ − ψ)] δFi(θ)

+
[
Fj(θ′) ∓ d cos(θ′ − ψ)

]
δFj(θ′)

}
i �= j

δH
(2)
0 (k0Rj) = − k0

Rj
H

(2)
1 (k0Rj) ·

[
Fj(θ′) ± dj cos(ψ − θ′)

− Rmeas cos(θ − θ′)
]
δFj(θ′)
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δFj(θ) =
N/2∑

n=0

cos(nθ)δAjn +
N/2∑

n=1

sin(nθ)δBjn

δFj(θ′) =
N/2∑

n=0

cos(nθ′)δAjn +
N/2∑

n=1

sin(nθ′)δBjn

By applying the point-matching method with pulse basis function and
Dirac delta test function on Eqs. (8) and (9), one gets

0 = L11 · δJ + L12 · δx (12)
δEscat = L21 · δJ + L22 · δx (13)

where
δJ = [δJ1 δJ2]T

The inversion equation is therefore obtained

δEscat =
(
L22 − L21 · L−1

11 · L12

)
δx

�= M · δx (14)

Finally, one gets the differential increment δxn in the nth iteration in
regularized form for multi-incidence case

δxn =



γR+ · R +
Nf×Na×Nr∑

j=1

(Mn
j )+ · Mn

j




−1

·




Nf×Na×Nr∑

j=1

(Mn
j )+ · δEscat

j



 (15)

where R is the regularization matrix and γ is the regularization fac-
tor.

Consequently, the shape functions are updated according to

xn+1 = xn + δxn (16)

The flow chart of NKM for microwave imaging of two parallel perfectly
conducting cylinders is depicted in Fig. 3. The searching process starts
from an initial guess x0 , then goes into iterations updating the shape
functions by Eq. (16). The NKM-type termination conditions are:
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Figure 3. Flow chart of NKM for microwave imaging of two parallel
perfectly conducting cylinders.

(1) fn(xn) < ε
(2) fn(xn) > fn−1(xn−1)
(3) Maximum iterations are used up
The numerical results in [32] show that the NKM tends to converge

fast with a good starting point x0 and an exact knowledge on the
values of d1, d2 and Ψ . However, further study shows that it is
strictly subjected to the starting point and the knowledge on the values
of d1, d2 and Ψ . It is more prone to get stuck in the local minima
or even diverge. A priori is crucial for ensuring the convergence of
the algorithm. Unfortunately, such a priori is not always available or
accurate enough.

5. RGA COUPLED WITH NKM

Obviously, RGA and NKM behave complementarily while applied to
microwave imaging of parallel perfectly conducting cylinders. It is
therefore expected to develop a novel algorithm which inherits the mer-
its of both RGA and NKM. RGA coupled with NKM (RGA-NKM) is
consequently proposed. NKM is hybridized with RGA to improve the
performances of both NKM and RGA. The flow chart of RGA-NKM
is depicted in Fig. 2. It begins from an initial population which are
generated randomly within the search space. Then, the algorithm en-
ters into evolution loop searching for the optimum solution. In each
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evolution, a Newton-Kantorivitch type search for the local optimum is
performed after the genetic evolution. The RGA provides the start-
ing point of NKM. The best creature obtained by RGA after genetic
evolution is used as the starting point of NKM. NKM is used to refine
RGA to improve the local search ability of RGA.

6. NUMERICAL RESULTS

The RGA-NKM is used to reconstruct the first example in [49], two
circular perfectly conducting cylinders with radius 0.3 m located on
the x axis. d1 = d2 = 0.5m, ψ = 0◦ . All the parameters are identical
with those in [49] except stated otherwise. ε = 1% .

Pseudo random noise is added into the scattered electric field data
to investigate the effect of noise on the reconstructed result. The noise
is assumed to be additive white noise with zero mean value.

To show the effect of noise quantitatively, a relative error of shape
function between the reconstructed profile and the true one is defined
as

DISC =





1.0
2M

2∑

i=1

M∑

m=1

[
ρimag

im − ρtrue
im

]2

ρ2true
im






1/2

(17)

where the superscript image and true stand for the reconstructed pro-
file and the true one respectively

ρim =
{
[Fi(θm) cos θm ± di cos ψ]2 + [Fi(θm) sin θm ± di sinψ]2

}1/2

θm =
2π

M
m

To ensure that the proposed algorithm is practically useful, a false
assumption is made on the values of d1, d2 and Ψ . To facilitate
the comparison with RGA, they are set to be identical with those of
example 4 in [49].

The inversion is performed on an IBM P-133 PC. It takes 64 min-
utes and 58 seconds to get the final results for the noise-free case as
shown in Fig. 4. Seven generations of genetic evolution and 8 Newton-
Kantorivitch type iterations are performed. It was demonstrated in
[49] that the it took the RGA 393 generations of genetic evolution to
get the final result.

The effect of random noise is shown in Figs. 5 and 6. It can be
seen that the reconstructed results with signal-to-noise ratio 14 dB or
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Figure 4. Inversion results of example 1 with noise-free data (a) true
profile (b) initial guess (c) starting point for NKM and (d) inversion
result after one Newton-Kantorivitch iteration. The final result is ex-
actly the same as the true profile.

higher is very accurate. Fig. 5 also shows the effect of random noise
on RGA for reconstructing this example. The typical inversion results
by RGA using random noise contaminated data are shown in Fig. 7.
To speed up the inversion process, the values of d1, d2 and Ψ for this
case are assumed to be known exactly in advance. This may improve
the noise-tolerance level of RGA.

Obviously, the RGA converges much more slowly than the RGA-
NKM. In addition, Fig. 5–7 demonstrate that the noise-tolerance level
of RGA-NKM is improved slightly.

The NKM is also used to invert the above object. The values of
d1, d2 and Ψ for this case are assumed to be known exactly in advance.
Four cases are considered:

Case 1: Generate the initial guess randomly within the same search
range. Twenty trials were simulated. In our simulation, none of the
trials succeeds

Case 2: Set the initial guess of the coefficients as their mean values of
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Figure 5. Effect of noise.

Figure 6. Inversion results of example 1 by RGA-NKM with noisy
data.

the search range, i.e., Ai0 = 1.0, (Aij , Bij) = 0, i = 1 ∼ 2, j = 1 ∼ 4 .
The NKM fails.

Case 3: Set the initial guess as the two extreme cases of the search
range, i.e., (i) Ai0 = 0, (Aij , Bij) = −0.5, i = 1 ∼ 2, j = 1 ∼ 4 (ii)
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Figure 7. Inversion results of example 1 by RGA with noisy data.

Ai0 = 2, (Aij , Bij) = 0.5, i = 1 ∼ 2, j = 1 ∼ 4 . The NKM fails for
both of them.

Case 4: Set the initial guess to be identical with that of the RGA-
NKM which is the best one among the initial population. The NKM
fails.

Comparing the simulation results by RGA-NKM with those by
NKM, it is found that the RGA-NKM shows a much higher level of
robustness than NKM.

The RGA-NKM is used to reconstruct the second and third example
in [49] too. The measured(simulated) scattering data here are assumed
to be noise-free. The inversion results are shown in Figs. 8 and 9.
The inversion takes 50 minutes 45 seconds and 19 minutes 18 seconds
respectively.

7. CONCLUSIONS

In this paper, NKM is hybridized with RGA to improve the perfor-
mance of both RGA and NKM. A novel inversion algorithm, RGA-
NKM, for microwave imaging of perfectly conducting cylinders with
or without the effect of random noise is proposed. The main idea
of the RGA-NKM is to perform a Newton-Kantorivitch type search
for the local optimum after the genetic operations in each genetic
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Figure 8. Inversion results of example 2 with noise-free data (a) true
profile (b) initial guess (c) starting point for NKM and (d) inversion
result after one Newton-Kantorivitch iteration. The final result is ex-
actly the same as the true profile.

Figure 9. Inversion results of example 3 with noise-free data (a) true
profile (b) initial guess (c) starting point for NKM and (d) inversion
result after one Newton-Kantorivitch iteration. The final result is ex-
actly the same as the true profile.
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evolution. The RGA provides the starting point of NKM. The best
creature obtained by RGA after genetic evolution acts as the starting
point of NKM. The NKM refines RGA to improve the local search
ability of RGA.

Numerical results and comparisons with both RGA and NKM
demonstrate that the RGA-NKM retains the advantages of RGA such
as high level of robustness, versatility and insensitiveness to ill-
posedness, greatly improves the search ability and speeds up the con-
vergence.

On the other hand, the RGA-NKM is not without drawbacks. It
loses its simplicity since the NKM is hybridized.
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