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Abstract—An adaptive wavelet packet transform (AWPT) algorithm
is proposed to process synthetic aperture radar (SAR) imagery and
remove background clutters from target images. Since target features
are more efficiently represented using the wavelet packet bases, higher
signal-to-clutter ratios (SCR) can be achieved in the wavelet transform
domain. Consequently, clutters can be more effectively separated from
the desired target features in the transform domain than in the orig-
inal SAR domain. The processed results based on the MSTAR data
set demonstrate the effectiveness of this algorithm for SAR clutter

reduction.
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1. INTRODUCTION

Synthetic aperture radar (SAR) images of ground targets after the
focusing process generally consist of target images and clutters from
background scattering [1]. The clutter signal is undesirable since it in-
terferes with the actual target features in automatic target recognition
(ATR) applications, and has to be removed before ATR processing.
The traditional way to suppress clutter is to choose a threshold using
CFAR that is based on the standard deviation and mean value of the
clutter, and the threshold is applied to the SAR image chip to remove
the clutter directly [2, 3]. However, this approach assumes that the
target signal-to-clutter ratio (SCR) is large enough. If this assumption
is not true, this approach results in either target feature loss or large
clutter residues. In this work, we investigate the use of orthogonal basis
transformation to increase the SCR for more effective clutter removal.
More specifically, our approach is to find the best wavelet packet basis
to represent a SAR image using the adaptive wavelet packet transform
(AWPT) [4-9].

Wavelet packet basis is a generalization of the conventional wavelet
basis. It retains the multi-resolution property of the conventional
wavelet basis while abandoning the rigid constant-Q structure in the
decomposition. Wavelet packets have been applied to image compres-
sion [7] and moment matrix sparsification [9] with good success. Theo-
retically they include regular pulse basis, FF'T basis, short-time Fourier
transform (STFT) basis, as well as conventional wavelet basis. In this
application, we transform the SAR image into the wavelet packet basis
to maximize the signal-clutter-ratio in the transform domain. Since
a typical target image usually consists of point scatterers and more
diffused region features, the multi-scaled wavelet basis is well suited to
focus the target image. Clutter in the images, on the other hand, is sta-
tistically uncorrelated (or weakly correlated) from pixel to pixel, and
the transformed clutter image under the same set of bases remains un-
focused [8, 10, 11]. Therefore, we expect that the SCR can be increased
by transforming the original image with an appropriately chosen set of
wavelet packet basis. To determine the best basis for a SAR image, we
implement the AWPT algorithm to search for the best wavelet packet
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basis based on a cost function that describes how well the target signal
is focused in the transform domain. Because clutter in a SAR image is
usually not strictly white, we apply a frequency-dependent threshold
to the transformed image. We then inverse-transform the thresheld
image in the wavelet packet basis domain back to the SAR domain to
obtain a de-cluttered target image.

This paper is organized as follows. In Section 2, we introduce the
basic concept of wavelet packet basis. In Section 3, we discuss problem
formulation and the algorithm for SAR clutter rejection based on the
adaptive wavelet packet transform. In Section 4, we present the test
results of the algorithm using the MSTAR data set [12]. In Section 5,
we draw some conclusions from this work.

2. WAVELET PACKET BASIS FOR SIGNAL
REPRESENTATION

A wavelet packet basis function can be expressed in the space domain
as:
Pip(e) =279, 2 e —k), ke Z, je Z,neZy (1)

where k, j, and n denote the space shift, scale, and modulation index,
respectively. The function ), can be generated from the decomposi-
tions of both the scaling function and mother wavelet function using
the “two-scale equation” [4, 5]. The parameter choice of a wavelet
packet basis is not unique for a complete and orthogonal decomposi-
tion of a signal in L? space. For a wavelet packet basis function ko
we define its dyadic interval I;, C R in the frequency domain as [4,
9]:

Lin=1[27n, 279 (n+1)) (2)

For the complete and orthogonal wavelet basis functions {¢}} chosen
to represent a signal in L? space, their dyadic intervals should be
disjoint and cover the entire signal bandwidth, i.e.,

Nin = (@) (3)

and

ULn=10.1) (@)
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Therefore, the wavelet packet basis function 7 can be interpreted as
a modulated wavelet with a central frequency of 277(n + 1/2) and a
normalized bandwidth of 277.

For two-dimension image decomposition, the 2-D wavelet packet
basis function can be configured from two 1-D wavelet packet basis
functions as follows:

U, m) = 02,58, o)
In (5), we restrict the scales of the two 1-D basis functions to be the
same. This guarantees the basis functions will be of the same size in
the horizontal and vertical directions, and remove the inter-scale cou-
pling terms in the transformed image. For a complete and orthogonal
decomposition, the two 1-D basis functions in (5) must also meet the
requirements in (3) and (4).

Assuming that the original image in the spatial (SAR) domain is
{s(m,n), 0 <m, n < N}, we define a set of complete and orthonormal
2-D wavelet packet basis functions:

{Ujg(k) 0<j<J, 0<p, g<?, 0<k I<N27}  (6)

where j denotes the scale, J =logy(NN), p and ¢ are the frequency
modulation indices, and k, [ are the position indices. The decompo-
sition coefficients of the image s(m,n) using the wavelet packet basis

(6) are:

Shaksl) = 3037 stm,m)Uj gk = 2m, 1= 27n) (1)

With the image extended to be periodic in the spatial domain, the
total number of coefficients is exactly N? through the transform in
(7). For convenience, we refer to the coefficients as simply a matrix
{g(m,n), 1 <m,n < N} without explicit indication of j, p and g.

Given a SAR image s(m,n), we set out to find the best wavelet
packet basis to maximize the SCR in transform domain. In the other
words, we try to make the transformed coefficient matrix {S(m,n),
1 <m,n < N} as sparse as possible.
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3. SAR IMAGE CLUTTER REDUCTION USING
ADAPTIVE WAVELET PACKET TRANSFORM

3.1 Statistical Signal Model

We assume that a focused SAR image in spatial domain is:
{s(m,n), 0 <m,n< N} (8)

Ignoring additive noise and possible multiplicative speckle noise in the
image, we consider a SAR image that consists of only the target image
and clutters generated from the background scattering [15]. Basically
the target image and the clutters are non-overlapping in a SAR image,
therefore there is:

| t(m,n), (m,n)in target area
s(m,n) = {c(m,n), (m,n) in clutter area 0<m, n<N (9)

For a clutter pixel ¢(m,n), it includes reflections from minute scatters
inside this resolution cell. For modern coherent imaging radar with a
quadrature receiver, it can be represented as:

K
c(m,n) = Z ay exp(j27 fei)
k=1
=c¢r + 76 (10)

where a; and 75 are the magnitude and relative two-way propagation
delay of the reflection from the k-th scatter in this clutter resolution
cell. If we assume those variables are statistically independent and K
is large, according to Central limit theorem the sum in (10) tends to
be a complex Gaussian random variable, and its amplitude is approxi-
mately Rayleigh distributed [13, 16, 17]. Although, for high-resolution
radar with a low gazing angle, the amplitude is closer to be Weibull
distributed for ground clutters, Rayleigh approximation is accurate
enough, especially for the distribution near the mean [15].

Another important assumption about SAR clutters is that clutters
in different pixels are statistically independent [13-16]. Therefore, we
have:

Ele(m,n)e*(p,q)] = 020(p — m)d(g = n) (11)
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where o, is the clutter standard deviation, and ¢ is the Dirac function.

Using ergodic characteristics of independent identical random vari-
ables, the statistical mean value in (11) can be approximated with a
spatial average:

E[c(m,n)c" ZZ (k,)c*(k+p—m,l+q—n)

=035(p*m)5(qfn) (12)

From (12) we find the clutters are spatially uncorrelated, which provide
clutters a distinct feature from the target signal. But we must note
that for SAR clutters there is some weak correlation among adjacent
pixels, thus (12) is not quite right if p —m and ¢ — n are close to
ZEros.

Generally the target area is in the central part of a SAR image, and
the clutters are located in surrounding parts. We define that the target
signal is zero in clutter area, and the clutter is zero in target area, i.e.,

t(m,n) =0, (m,n) in clutter area (13)
c¢(m,n) =0, (m,n) in target area (14)
Because zero values don’t contribute anything to the summation in
(12), the definition in (14) doesn’t affect the autocorrelation property
of clutters in (12) as long as there are enough actual clutter samples in
the correlation. Also the zeros in (13) won’t affect the autocorrelation

property of target image.
Considering (9), (13), and (14), we have:

s(m,n) =t(m,n) +c(m,n) 0<m, n<N (15)

With the additive model in (15) for a SAR image, we need to find the
best wavelet packet basis to maximize Signal-to-Clutter ratio in the
transform domain.

3.2 Best Wavelet Packet Basis for Maximization of Signal-to-
Clutter Ratio

If we apply a wavelet packet basis shown in (6) to a SAR image
s(m,n) in (15), the transform coefficients are:

ZZ anJ k—2m,l—2n)

:Tliq(k, )+ Clj,ﬂ(k, 1) (16)
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where:

T3,k 1) = > > t(m,n)Uj (k- 2/m,1 — 27n) (17)

Gl (k) = 3.5 elm,n)UL,(k — Pm, 0~ 2n)  (18)

are the coefficients for target image and clutters, respectively.

Because a liner combination of independent Gaussian random vari-
able, the clutter coefficients still are Gaussian distributed. If we re-
write (18) into a simple form, and note that wavelet packet basis is
orthonormal, there are:

C(k,1) = zm:zn:c(m,n)U(k:,l,m,n) (19)
and
E [C(k,1)C* (. 5)]
;%:C(m, n)U(k,1,m,n) > > ¢ (p,q)U i, 4, p, q)
= %: zn: > Ele(m,n)c" (p, q; U(qk:, 1,m,n)U (4,7, p,q)
= ; ; é é ocd(p —m)é(q —n)U(k,1,m,n)U (i, j, p,q)

- Z Z o U(k,l,m,n)U(i,j,m,n)
— 081 — k)3 (j — 1) (20)

=F

Therefore, the clutter coefficients are uncorrelated, thus independent
Gaussian statistical variables with the same mean and variance as those
of the clutter in spatial domain.

We have demonstrated that the statistical characteristics of SAR
image clutters don’t change after wavelet packet basis transformation.
But target image is correlated to itself. We need to find a wavelet
packet basis to make transformed target image further concentrated,
and increase the signal-to-clutter ratio in transform domain, in other
words, we need to make transformed target image sparse. A cost func-
tions is needed to measure the sparsity of the transformed signal, thus
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the best wavelet packet basis can be found for a specific image to
achieve the maximum sparsity in the transformed image. A typical
cost function for sparsity is entropy function. But entropy function
itself is not an additive cost function, which makes it inapplicable in
a fast global best basis search algorithm. A modified additive en-
tropy function was proposed [18, 19], but it requires computation-
intensive logarithm operation to evaluate function cost, and is unsta-
ble in the environment with clutter or noise interference. Alternatively
we use [P energy concentration function as cost function in this ap-
plication. The [P energy concentration function of a data sequence
{z(k), k=1,2,...,K} is defined as:

c=la®k)P O0<p<?2 (21)

gl

For a transformed SAR image with a coefficient matrix [E} , the cost
function is:

C:ZZ}@(k,l)‘p 0<p<? (22)
k !

For convenience and efficiency, we usually choose: p =1 in (22). Sup-
posing we transform a sequence {z1,z2,- -, 2} into another sequence
{Z1, %2, --,2p} with a wavelet packet basis using the cost function of
(22), the transformed sequence is the sparsest if all of them excerpt
one are zeros, accordingly the cost is the minimum in this case. We
illustrate the best basis selection criterion based on the energy concen-
tration cost function in (21) using a simple case: assuming that a data
sequence is {x1,x2} with energy equal to 1, and its orthonormal basis
transform coefficients are {Z1,Z2}, we have:

21 ° + |3o)* =1 (23)
The cost function is:
Cost = ’i‘1| + |:f2‘ (24)

As shown in Figure 1, transformed data must be a point on the circle
with radius of 1 because of constant energy constraint. The Lines
a, b, and ¢ are the energy concentration cost functions with p = 1.
The cost function lines must cross the one-fourth of the circle to satisfy
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Figure 1. Relationship between the sparsity of a basis transformed
signal and the energy concentration cost function.

the energy constraint. Apparently on Line ¢ the blank point is the
transformed data, but it has the highest cost, and worst sparsity. On
Line a, two white points are the possible transformed data. They have
the lowest cost, and best sparsity for all possible basis transformation.
The gray points on Line b are the transformed data with cost and
sparisty between the best and the worst. Therefore, based on the
energy concentration cost function, we can effectively find the best
transform basis to maximize the sparsity of the transformed signals.

Due to the non-overlapping of target and clutter in spatial domain,
mostly the coefficients for target and clutter are also separated in the
finer scales in the transform domain. Thus the total cost of the trans-
formed SAR images in (16) is approximately equal to the sum of the
costs of transformed target images and clutters, i.e.,

Cost([8]) = cost ([T]) +cost ([&]) @)

where [g] , [’ﬂ , and [6} are the transform coefficient matrices

for the whole SAR image, target image, and clutters, respectively.
The cost of transformed clutters doesn’t change because they are the
random variables with exactly the same distribution as that of the
original clutters in spatial domain. The minimization of the cost of
the whole transformed SAR image is equivalent to the minimization
of that of the transformed target image, and thus the maximization of
target signal-to-clutter ratio in the transform domain.
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3.3 Implementation of Adaptive Wavelet Packet Transform
for SAR Images

Theoretically we can apply every possible wavelet packet basis to a
SAR image, evaluate the cost of the every transformed image, and find
the best wavelet packet basis with the least cost. But the brutal force
computation is impractical to implement because there are too many
eligible wavelet packet bases for a specific application and the direct
convolution in (7) is computationally too costly. Fortunately, in [18] a
fast decomposition algorithm was proposed to search the best wavelet
packet for a data sequence based on additive cost function, and it can
be readily adapted to 2-D SAR image processing.

Generally the original SAR image is the discretized samples using
pulse basis, and it can be approximated as the coefficients of wavelet
packet basis with the highest spatial resolution, i.e., in the finest scale.
The decomposition coefficients in the next scale are related to the ones
in current scale by “2-scale equations” using a pair of quadrature filters
{h(n)} and {g(n)}.

Assuming that the initial image samples are represented with a ma-
trix [S], its decomposition coefficients at the next scale can be obtained
through the convolution and down-sampling of [S] and quadrature fil-
ter impulse responses {h(n)} and {g(n)}, i.e.,

Sin(m.n) =33 s(k,Dg(2m — k)g(2n — 1)
k l

SPm,n) =33 s(k, Dh(2m — k)g(2n — 1)
k l

o (26)
Sip(m,n) => "3 "s(k,1)g(2m — k)h(2n — 1)
k l

S m,n) =3 s(k,)h(2m — k)h(2n — 1)
k l

where {h(n)} and {g(n)} denote the impulse responses of low- and
high-pass Quadrature Filters (QFs), respectively. The decomposition
in (26) is widely referred as quadtree decomposition, which is illus-
trated in Figure 2. The quadtree decompositions can be applied recur-
sively until the coarsest scale is reached. Apparently the decomposition
at each scale needs O(N?) operations, and the number of total avail-
able scales is about logy(N). Therefore, the total computation cost
to implement the full decomposition from spatial domain to frequency
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Figure 2. Quadtree decomposition structure.

domain is about O(N?log,N) operations using the quadtree decompo-
sition method. Because the cost function is additive, the best wavelet
packet basis and corresponding transform coeflicients can efficiently
found from the fully quadtree decomposed result. With regard to a
SAR image the procedures to find the best wavelet packet basis and
the transform coefficient are as follows:

1. Fully decompose the initial image into frequency domain using
quadtree decomposition.

2. Use the wavelet basis at the last scale as the best initial basis,
and its cost as the best initial cost.

3. Trace back from the last scale, and comparing the cost at every
node with the smallest cost in the all branches decomposed from
the node. If the cost is reduced, update the best basis and the
corresponding cost using this node; otherwise continue the back-
ward search for the best basis.

4. The best basis and its transformed coefficients are found when
the search comes toward the first scale, i.e., the initial spatial
sampling data.

4. PROCESSING RESULTS

With the principles described, the clutter in a specific SAR image can
be removed in the wavelet packet basis domain. The clutter removal is
implemented by thresholding processing in the transform domain with
a higher Signal-to-Clutter ratio compared with direct thresholding in
spatial domain. But even the thresholding processing in transform
domain will inevitably cause the target image loss, while the clutter
is suppressed. In the processing, we choose a threshold level to keep
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target image loss under an acceptable level, and allow some clutter
residues to exist after the processing. The clutter residues can be
easily removed by some post-processing such as additional thresholding
and clustering processing in spatial domain. The processing scheme for
SAR clutter reduction using AWPT method is shown in Figure 3. This
clutter reduction scheme is applied to standard MSTAR SAR images
[12]. A typical focused MSTAR image with clutters is shown in Figure
4. The image size is 128 x 128, and the resolution is about 0.3m X
0.3m. The target in the image is BTR-70 transportation vehicle, and
the clutter was generated from background vegetation scattering. From
the image, we can find that the reflections from the rear part of this
vehicle are weak and indistinguishable from the background clutters
due to the signal blockage by the front part of the target. It would be
difficult to remove all clutters and keep the whole target signal intact
using direct thresholding method.

4.1 Wavelet Filter for SAR Image Transform

Wavelet packet transform of an image can be implemented by re-
cursive quad-tree decomposition of the original spatial sampling data.
Based on “two-scale equations,” the coefficients in the coarser scales
can be derived from the coefficients in the finer scales. Considering
the original sampling SAR data as the transform coefficients with the
finest scale in spatial domain, we can obtain all wavelet packet trans-
form coeflicients by repeatedly filtering and down-sampling of the orig-
inal spatial image using a wavelet filter. To maximally concentrate the
energy of the transformed image, we choose Daubechies wavelet filter
in this application. It is the most commonly used orthonormal wavelet
filer; and the corresponding wavelet basis functions possess localiza-
tion property in both time and frequency domains. The order of the
wavelet filter is related to the vanishing moments of the wavelet ba-
sis functions. The higher the wavelet filter order, the more vanishing
moments the basis functions, thus the more concentrated the trans-
formed coefficients. However, through the convolution operation, the
finest spatial resolution available for the transformed coeflicients is the
order of the wavelet filter. For a SAR image with scattering points
in high spatial resolution, the wavelet filter of low order is desired for
efficient representation of those scattering points in the transform do-
main. Therefore, we choose Daubechies filter with the order of 6 as the
wavelet filters in this application. Using the AWPT algorithm based on
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Figure 3. The processing scheme of automatic SAR clutter reduction
based on Adaptive Wavelet Packet Transform (AWPT).

Figure 4. SAR image for BTR-70 transportation vehicle with vegeta-

tion clutters.

the quad-tree decomposition, we transformed BTR-70 image in Figure
4 into AWPT domain. The transformed image is displayed in Figure
5. The value of the corresponding energy concentration cost function
is about 595 for the best wavelet packet basis, opposed to 777 of the
cost function value in spatial domain; while the cost function value is
about 641 if the conventional wavelet transform is applied to the im-
age. Apparently we achieve the sparsest transformed image using the

AWPT algorithm.
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Figure 5. The basis transformed BTR-70 SAR image using AWPT.

4.2 Frequency-Dependent Thresholding

To remove clutters in the AWPT domain, we need to apply a thresh-
old level to the transformed coefficients of SAR images. The common
thresholding method is the soft-shrinkage proposed in [10], in which the
above-threshold signal amplitude is reduced by a level of the thresh-
old. The soft-thresholding is generally applicable to the cases that
signals and noise or clutter are spatially overlapping. For SAR im-
ages, the target image and clutters are basically non-overlapping even
in the transform domain. Hard-thresholding is a better choice, and it
is defined as follows:

S S(m,n) if ‘g(m,n)’ >T

~ (27)
0 if ‘S(m,n)’ <T
where: T is the threshold level.

If the spatial clutters are white and Gaussian distributed, the trans-
formed clutters, as we have demonstrated, are still white and Gaus-
sian distributed. Based on Newman-Pearson Criterion [15], the best
threshold level is a constant provided that it meets requirements for
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probabilities of false-alarm and target detection. But for SAR images,
a pixel has some weak correlation with its adjacent pixels. Therefore,
the clutter on a SAR image is not really white, and its power spectrum
is stronger in lower frequencies. We design the threshold levels that
are dependent on the central frequency for the quad-tree decomposition
outputs at each of the final branches. For the output of one of out-
ermost branches of the quad-tree decomposition, the central vertical
and horizontal frequencies are assumed to be fy and fr, respectively,
and the central frequency at that output branch is considered to be:

fo=\ 0+ f& (28)

From quad-tree decomposition structure, we can find out the frequen-
cies fyy and fg, noting that due to the down-sampling, for two-
channel decomposition of higher frequency band data, the high fre-
quency components come out from low frequency filter output; while
the low frequency components from high frequency filter outputs.
Therefore the threshold level for the quad-tree decomposition output
branch with central frequency fo is:

C- oc
B+ fé

T(fe) = (29)

where C' is a constant, o. is the clutter standard deviation, and «
and [ are the parameters used to fit the mode to actual clutters.
Therefore, the threshold level is the largest in low frequency, and the
smallest in high frequency. Due to hard-thresholding processing, there
is no DC energy loss for target image even with a high threshold level
in near-DC areas. For MSTAR image processing we choose: «a =
08 ~ 1, and 8 = 0 in (29) to approximate the clutter spectrum
characteristics and achieve the best clutter rejection performance. The
AWPT transformed BTR-70 image is thresheld with parameters: C =
0.5, a = 0.85, and § = 0 in (29), and shown in Figure 6. Using
frequency-dependent threshold, we still can keep the delicate high-
frequency components, which represent the important point-scattering
reflections in the SAR images. But we could lose or blur the point-
scattering signals after the processing if just using a constant threshold
level for all transformed coefficients.
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Figure 6. The transformed BTR-70 SAR image after frequency-
dependent thresholding processing.

4.3 Post-Processing

Through thresholding processing most SAR image clutters are elim-
inated in the AWPT domain. The original SAR images can be re-
stored by inverse-transforming the wavelet coefficients to spatial do-
main based on the same basis in the quad-tree decomposition. Simi-
larly the inverse-transform can be efficiently implemented with filter-
ing and up-sampling using another pair of filters {P(n)} and {Q(n)}.
Even with thresholding processing in AWPT, there are still some clut-
ter residues existing. After the inverse-transform, those clutter resides
will spread over SAR domain. Therefore, a second small threshold and
a clustering processing are applied to the restored SAR image to fur-
ther improve clutter rejection performance. The clustering algorithm
replaces with zeros any connected non-zero blocks that have fewer el-
ements than a pre-defined block size. Usually we set the block size to
larger than the clutter residue sizes and smaller than target block size.
For MSTAR images a clustering block size of 32 is usually enough to
eliminate all clutter residues. Figure 7 is the restored BTR-70 image
through post-processing with a second threshold level of about 0.1c..
Also the best processing result using direct thresholding and clustering
processing is shown in Figure 8. Apparently an essential part of the
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Figure 7. The restored BTR-70 image with thresholding in AWPT
domain and post-processing in spatial domain.

Figure 8. The de-cluttered BTR-70 image with direct thresholding
processing in spatial domain.
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target is lost in the direct thresholding processing because of low signal-
to-clutter ratio in spatial domain, which thus poses a threat to correct
target identification afterwards. Through the AWPT processing, the
whole original target image is kept, while the clutters are completely
removed.

4.4 Performance Metrics for MSTAR Data Processing

For a SAR image recovery processing the clutter rejection perfor-
mance of an algorithm can be measured based on the ratio of mean
square error to clutter standard deviation. But in the cases of absence
of the original reference signals as for MSTAR images, the improve-
ment of average target image signal-to-clutter ratio is a reasonable
substitute. We define average target Signal-to-Clutter Ratio (SCR)

| >3 [st9)
SCR = JNUC (30)

where S (7,7) is the processed target pixel, N is the total number of
target image pixels, and o, is the clutter standard deviation.

The clutter rejection performance of an algorithm can be mea-
sured based on SCR improvements through its processing. In the
AWPT clutter rejection processing, we gradually increase the AWPT
domain threshold level, and measure the SCR improvements due to
the thresholding processing in the AWPT domain (prior to the post-
processing), while keeping the target image loss inside an acceptable
range. Figure 9 shows SCR vs. the target image loss for three different
kinds of MTSAR images through the AWPT processing. Target Image
Loss (TIL) is defined as:

T =225 (31)
S

where S and S are the average target signal amplitudes before and
after the processing, respectively. For comparisons the SCR vs. TIL
curves for Conventional Wavelet Transform (CWT) and direct thresh-
olding are plotted in the same figures. We find that for a fixed target
image loss, the AWPT algorithm almost always performs better than
the CWT or direct thresholding method.
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Figure 9. Signal-to-Clutter Ratio vs. target image loss using AWPT,
CWT and direct thresholding methods for (a) BTR-70, (b) T-72.
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Figure 9. Signal-to-Clutter Ratio vs. target image loss using AWPT,
CWT and direct thresholding methods for (¢) BMP-2 targets.

5. CONCLUSIONS

We have developed a new clutter-rejection algorithm for SAR images
based on Adaptive Wavelet Packet Transform (AWPT). It transforms
the basis function of the SAR images from the regular pulse basis to
a wavelet packet basis to make the transformed coefficients maximally
concentrated on the transform domain. The transformed image has
a higher target Signal-to-Clutter Ratio (SCR) compared with that in
conventional spatial domain, thus the clutters can be removed in trans-
form domain with less target signal losses. The method is based on the
basic assumption that a clutter pixel in a SAR image is not or weakly
correlated with one another; while target signals are strongly corre-
lated to themselves. Thus, the SCR improvements are made possible
through basis transformation.

The energy concentration function is used as the cost function to
find the best wavelet packet basis to make the transformed coefficients
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with the maximum SCR. The best basis search and the basis transfor-
mation for an image can be efficiently implemented using 2-D quad-tree
decomposition algorithm. To search the best wavelet packet basis for
a SAR image with clutters, it is very important to ensure either that
the clutters and the target image are approximately non-overlapping
after transformation in transform domain; or that the target energy
is significantly stronger than the clutter one. Hence the best wavelet
packet decomposition trees can be dominated by the target signals;
otherwise the AWPT algorithm is not applicable.

A frequency-dependent thresholding method is introduced because
the clutters in a SAR image are weakly correlated, i.e., they are “col-
ored” rather than “white,” as commonly assumed. The threshold level
for the AWPT transformed outputs are chosen based on the central fre-
quency of the data in this output. The lower the central frequency, the
higher the threshold level. Simulation results show that the careless
thresholding could degrade the performance of the AWPT algorithm
to that of conventional wavelet transform, or even worse.

Processing results on MSTAR images show that this algorithm is
very effective to remove the clutters for a SAR image with only lim-
ited clutter information such as standard deviation and rough spec-
trum characteristics required. With robust parameters pre-selected,
the AWPT algorithm can be used to automatically remove the clut-
ters in a large number of SAR images. But for the conventional direct
thresholding method, it is usually very difficult to find a threshold
level to remove all background clutters and keep the whole target im-
age unaltered. This new method is also very useful for the situations in
which the classical direct thresholding method might not work at all.
Those situations include that some parts of target image signals are
weaker than the clutter, or that the target signals and clutters are spa-
tially over-lapping resulting from un-focused processing, or multi-path
effects.
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