A Compact Parasitic Mushroom Patch Loaded Antenna for 5G mm
-Wave Applications (28 GHz
/38 GHz
)
Tarik El-Arrouch,
Abdelaaziz El Ansari,
Najiba El Amrani El Idrissi,
Mahadu Trimukhe,
Shobhit Khandare,
Zahriladha Zakaria and
Ahmed Jamal Abdullah Al-Gburi
This study introduces and evaluates a smaller rectangular antenna featuring parasitic mushroom patches to achieve enhanced gain and wide impedance bandwidth (WIBW) for 5G millimeter-wave (mm-wave) applications (28 GHz/38 GHz). The antenna structure consists of a simple rectangular patch fed by an inset feed microstrip line operating at 50 Ω. To improve the antenna gain and impedance bandwidth, a parasitic mushroom structure is introduced around the edges of the main patch. Additionally, to further enhance operating bandwidth and matching, two rectangular Defected Ground Structures (DGSs) are incorporated in the bottom side. The antenna is fabricated on a low-cost substrate specifically FR4 (εr = 4.4 , tangδ = 0.02), with dimensions of (12 × 13 × 0.8) mm3. The results demonstrate a wide impedance bandwidth of 14.2 GHz (50.71% FBW) covering frequencies of 25.98 GHz to 40.18 GHz, and the antenna achieves a maximum gain of 7.20 dB at 28 GHz and maintains an efficiency more than 80% across the entire bandwidth. These outcomes make the antenna a good choice for 5G applications at 28 GHz and 38 GHz.