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Abstract—A novel method for direction-of-arrival (DOA) estimation
is proposed. This technique employs the excellent performance of
Bartlett method in coherent environments as well as high resolution
and low computational complexity of Beamspace MUSIC. Simulation
results show that the use of Beamspace MUSIC with Bartlett yields
significantly improved performance compared to the original MUSIC
especially in highly correlated situations.

1. INTRODUCTION

Array signal processing has been a very active research area for several
decades. One of its most important fields is Direction-Of-Arrival
(DOA) estimation which is very applicable in wireless and mobile
communication (e.g., smart antenna [1–5]).

In many applications, we need high resolution estimation of DOAs.
For this purpose, many high resolution subspace-based algorithms
such as MUSIC [6] and ESPRIT [7] have been proposed in the past.
However, they have poor performance in fully or partially correlated
situation which is very common in communication system (e.g., in
multipath phenomenon [8]). Many methods have been suggested to
improve the performance of algorithms in fully correlated situation.
But they suffer from some difficulties such as needing extra elements [9]
or limitation on the number of correlated sources [10].

In this paper, we propose an effective method for DOA estimation
for coherent sources which is also computationally efficient. While
the algorithm has no limitation on the number of coherent sources it
does not need extra elements either. Hence it is expected that this
algorithm performs better in multi-path situations when compared to
MUSIC and ESPRIT. This method takes advantage of Bartlett and
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Beamspace MUSIC methods and offers a low computational algorithm
for locating the coherent sources.

In this paper at first Bartlett, MUSIC, and Beamspace MUSIC
DOA estimation methods are briefly introduced, followed by our
proposed algorithm. Finally simulation results are presented to
compare this method with MUSIC algorithm.

2. BACKGROUND

2.1. Data Model

Narrowband processing is considered herein. Assume that there
are D narrowband signals arriving to the array in directions θ ∈
{θ1, θ2, θ3, . . . , θD} and M sensors in the array have identical isotropic
responses. In order to simplify the problem under consideration, a
uniform linear array (ULA) is assumed with inter-element spacing of
half wavelength of the narrowband signal frequency (There are many
studies about DOA estimation with uniform circular arrays (UCA)[11–
15]).

Data received at sensors can be described by a M × 1 vector as:

x̄(t) = A(Θ)s̄(t) + n̄(t) (1)

x̄(t) = [x1(t) x2(t) . . . xM (t)]T (2)

where A(Θ) = [ā(θ1) ā(θ2) . . . ā(θD)] is the array manifold
containing information on the steering vectors associated with the
DOAs of the incident signals (Steering vector is a complex vector
containing responses of all sensors of the antenna to a narrowband
source of unit power). s̄(t) is the D × 1 source signal vector and n̄(t)
is the M × 1 additive noise vector at sensors.

If we assume that noise at each sensor is uncorrelated and
independent from both incident signals and the noise at other sensors,
then the array covariance matrix can be written as:

Rxx = E
[
x(t) · xH(t)

]

= A(Θ)E
[
s̄(t) · s̄H(t)

]
AH(Θ) + E

[
n̄(t) · n̄H(t)

]
= ASAH + σ2I

(3)

where S = E[s̄(t) · s̄H(t)] is the source covariance matrix and σ2 is the
noise power at array sensors.

From matrix theory, the array covariance matrix can be described
by its eigenvalues and eigenvectors as:

Rxx = EsΛsE
H
s + EnΛnEH

n (4)
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where Es = [ē1 ē2 . . . ēD] and En = [ēD+1 ēD+2 . . . ēM ]
are the so-called signal and noise subspaces respectively, and
Λ = diag(λ1 λ2 . . . λM ) is a diagonal matrix containing the
eigenvalues. The D biggest eigenvalues form the signal eigenvalues
and others form the noise eigenvalues.

2.2. Conventional Beamforming Method (Bartlett)

One of the earliest methods of spectral analysis of DOAs is the Bartlett
method. The idea is to guide the antenna beam in one direction (by
using weighting vector (w̄) which acts like a spatial filter) and measure
the output power. The directions which result in maximum power
yield the DOA estimates. The average output power of N snapshots
is given by:

P (w̄) =
1
N

N∑

t=1

|y(t)|2 =
1
N

N∑

t=1

w̄H x̄(t)x̄H(t)w̄ = w̄HR̂xxw̄ (5)

where R̂xx = 1
N

N∑
t=1

x̄(t)x̄H(t).

R̂xx is the Maximum Likelihood estimation of Rxx = E[x(t) ·
xH(t)].

Bartlett method maximizes the power of the beamforming output
for a given input signal. In this method, weighting vector (w̄) which
maximizes the output power in direction θ is:

w̄B = arg
w̄
{max{P (w̄)}} → w̄B = ā(θ) (6)

The above weighting vector can be interpreted as a spatial filter,
which has been matched to the impinging signal. Intuitively, the array
weighting equalizes the delays (and possibly attenuations) experienced
by the signal on various sensors to maximally combine their respective
contributions. By inserting the weighting vector Eq. (6) into Eq. (5),
the classical “power spectrum” is obtained [16]:

PB (θ) = ā(θ)HR̂xxā(θ) (7)

The limitation of this method is that the sources, whose electrical
angles are closer than the beamwidth of the array, cannot be resolved
by this method [17].
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2.3. MUSIC Method

MUSIC is a popular high resolution eigenstructure method. The
MUSIC algorithm is based on the assumption that the desired signal
array response is orthogonal to the noise subspace (En) [17]:

EH
n · ā(θ) = 0 θ ∈ {θ1, θ2, θ3, . . . , θD} (8)

However, in correlated situation, the above equation is not
valid anymore. Hence, MUSIC-based algorithms do not show good
performance for correlated sources. In this method, the estimation
of covariance matrix (R̂xx) is decomposed into the signal eigenvectors
(Es) and noise eigenvectors (En). By using Eq. (8) the MUSIC power
spectrum is defined as [17]:

PMU (θ) =
1

|ā(θ)HEnEH
n ā(θ)| (9)

2.4. Beamspace MUSIC

As it was mentioned, MUSIC algorithm requires an eigenvalue
decomposition, which is a computation that is difficult to implement
in parallel and requires O(M3) multiplications for an M × M matrix,
corresponding to M sensors. Therefore, increasing M leads to a cubic
increase in computational complexity [18].

To achieve a significant reduction in computational time,
researchers proposed a so-called beamspace approach, which first
projects the original data into a subspace of lower dimension (i.e.,
the beamspace) and then processes the beamspace data by using
well-known direction finding algorithms such as MUSIC [19]. Since
the beamspace data are received from a pseudoarray of size B, the
computational complexity is reduced to O(B3).

The procedure of beamspace DOA estimation algorithms can be
divided into two stages, as shown in Fig. 1. In the beamforming
process, the output data at the array sensors from sources in different
directions pass through the multi-beamformers and the beam output
data are obtained. Beams can be formed in different ways, such as
using conventional beamforming techniques or adaptive beamforming
methods. Then in the DOA estimation process, based on the beam
outputs, source directions are determined by using high resolution
algorithms.

The outputs of these B beamformers can be written as

ȳ(t) = WH · x̄(t) ȳ(t) = [y1(t) y2(t) . . . yB(t)]T (10)
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Figure 1. Beamspace MUSIC block diagram.

where W is a M × B beamforming matrix consisting of beamformer
vector, one for each beam. The transform described in Eq. (10)
converts the element domain outputs into the beam domain outputs.

Under the narrowband assumption and for the case of multiple
incident sources, we have the beamformer outputs as follows:

ȳ(t) = WH · A(Θ)s̄(t) + n̄y(t) where n̄y(t) = WH · n̄(t) (11)

From Eq. (11), we have the steering vectors after beamforming
defined as:

v̄(θ) = WH · ā(θ) (12)

This vector plays the same role in the beamspace processing as
that of vector ā(θ) in the element-space processing.

Similar to element space domain, in the beam domain, the beam
covariance matrix can be written as

Ryy = E
[
ȳ(t) · ȳH(t)

]
= WHRxxW = WHASAHW + σ2WHW

(13)

Ryy also can be written in terms of eigenvalues and corresponding
eigenvectors as:

Ryy = WHASAHW + σ2I = EB−sΛB−sE
H
B−s + EB−nΛB−nEH

B−n
(14)

where EB−s and EB−n represent the beam domain signal and noise
eigenvectors, respectively and ΛB is the beam domain eigenvalues
matrix.

The MUSIC power spectrum in beamspace domain can be written
as [20]:

PB−MU (θ) =
1∣∣∣(WH · ā(θ))H · EB−N · EH

B−N · (WH · ā(θ))
∣∣∣

(15)
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2.5. Comparison between MUSIC and Bartlett

As mentioned before, Bartlett cannot resolve sources closer than
beamwidth of the array; however, MUSIC has the ability to resolve
very close sources. Figs. 2 and 3 show the power spectrum of Bartlett
and MUSIC for ∆θ = 20◦ and ∆θ = 10◦, where ∆θ represents the
angular difference between two incident sources. Fig. 3 shows that
Bartlett cannot resolve two close sources while MUSIC can.
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Figure 2. Normalized spectrum of the Bartlett, and the MUSIC —
M = 8, D = 2, SNR = 10 dB, ρ = 0, θ1 = 10◦, θ2 = −10◦.
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Figure 3. Normalized spectrum of the Bartlett, and the MUSIC —
M = 8, D = 2, SNR = 10 dB, ρ = 0, θ1 = 5◦, θ2 = −5◦.
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Despite Bartlett low resolution, this algorithm is not sensitive to
coherent sources in contrast to MUSIC high sensitivity. Figs. 4 and
5 show the power spectrum of Bartlett and MUSIC for two different
correlation coefficients (ρ = 0, ρ = 1), and Fig. 6 compares standard
deviation of Bartlett and MUSIC algorithm with respect to different
correlation coefficients. The results show the robustness of Bartlett
to coherent sources, while resolution of MUSIC decreases with the
increase of correlation coefficient.
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Figure 4. Normalized spectrum of the Bartlett, and the MUSIC —
M = 8, D = 2, SNR = 10 dB, ρ = 0, θ1 = 15◦, θ2 = −15◦.
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Figure 5. Normalized spectrum of the Bartlett, and the MUSIC —
M = 8, D = 2, SNR = 10 dB, ρ = 1, θ1 = 15◦, θ2 = −15◦.
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Figure 6. Standard deviation of Bartlett, and MUSIC versus
correlation coefficient — M = 8, D = 2, SNR = 10 dB, θ1 = 10◦,
θ2 = −10◦.

3. BARTLETT-MUSIC METHOD

In the previous section, we see that we can reduce the computational
burden by working in beamspace domain instead of element space
domain. If we know the approximate location of targets, we can create
beams just near expected region and increase the resolution. The
placements of beams are chosen in order to cover the region which
the target is expected to be. The initial approximation of target
location can be obtained by Bartlett algorithm. The advantages of
using Bartlett are low computational complexity and robustness to
coherent signals. Fig. 7 shows the block diagram of this algorithm.
The diagram shows that Bartlett is used as initial DOA estimator for
beamspace MUSIC method. Beamformer section forms a small number
of beams in the adjacent region of the Bartlett spectrum peaks. Then
the outputs of beamformer are applied to MUSIC algorithm and finally
DOAs are determined with high resolution.

This algorithm reduces the computational complexity in two ways:
1) by reducing the dimensions of search from M to B by using
beamspace method, 2) by searching only near the peaks of Bartlett
spectrum, instead of sweeping the whole space.

In addition, by use of Bartlett algorithm as an initial target
location estimator, we can resolve fully coherent sources which cannot
be differentiated by other algorithms such as MUSIC and ESPRIT.
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Figure 7. Bartlett-MUSIC block diagram.

4. SIMULATION RESULTS

In this section, results of our simulation are presented, which help the
better understanding of the performance of proposed algorithm.

Simulations were run with MATLAB. The data received on the
arrays are obtained by FEKO software. Eight monopole antennas
(M = 8) with an interelement spacing of a half wavelength are placed in
a ULA structure (Fig. 8). The method of open circuit mutual coupling
cancellation is used to mitigate the effect of mutual coupling [21]. Two
fully correlated sources with SNR = 10 dB are placed far from the array
elements.

In the first case (Fig. 9 and Fig. 10) the two sources are located in
θ1 = +2◦ and θ2 = −2◦. Neither Bartlett nor MUSIC can resolve these

Figure 8. Eight monopole antenna in a ULA structure with an
interelement spacing of a half wavelength (FEKO software).
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Figure 9. Antenna pattern of 3 beams in θ1 = 5◦, θ2 = −5◦,
θ3 = 0◦ − M = 8.
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Figure 10. Normalized spectrum of the Bartlett, the MUSIC and the
Bartlett-MUSIC — M = 8, D = 2, SNR = 10 dB, ρ = 1, θ1 = 2◦,
θ2 = −2◦.

sources (Fig. 10). But by generating of three beams in the vicinity of
Bartlett peak (0◦, ±5◦) (Fig. 9) and applying MUSIC for the output
of beams, we can estimate the location of sources (Fig. 10, Bartlett-
MUSIC algorithm).

It should be noted that in this case we only need to search near
Bartlett peak (−10◦ to +10◦) and we do not have to sweep the entire
space.
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Figure 11. Normalized spectrum of the Bartlett — M = 8, D = 2,
SNR = 10 dB, ρ = 1, θ1 = 30◦, θ2 = −30◦.
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Figure 12. Antenna pattern of 2 set of 3 beams near θ1 = 30◦,
θ2 = −30◦ − M = 8.

In the second case (Figs. 11, 12, and 13), the two fully correlated
sources are located in θ1 = +30◦ and θ2 = −30◦. Fig. 11 shows
the initial estimation by Bartlett algorithm. By generating two set of
beams near each peak (Fig. 12), DOA of each source can be obtained
precisely (Fig. 13).
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Figure 13. Normalized spectrum of the Bartlett and the Bartlett-
MUSIC — M = 8, D = 2, SNR = 10 dB, ρ = 1, θ1 = 30◦, θ2 = −30◦.

5. CONCLUSION

In this paper, we have presented a novel DOA estimator, which employs
the benefits of Bartlett and MUSIC algorithms. Simulation results
show that Bartlett-MUSIC algorithm is not affected by the correlations
in the signals. Moreover, the algorithm has less computational
complexity when it is compared to MUSIC algorithm.
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