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Abstract—The diagonal loading method is a simple and efficient
method to improve the robustness of beamformers. However, how
to determine the ideal diagonal loading level has not been adequately
addressed. In this paper, it is observed in the simulation that the
peak of the main beam is moved with the diagonal loading level when
there exists a Direction of Arrival (DOA) estimation error. Based on
the observation, a novel diagonal loading method is proposed, and a
tradeoff exists between the robustness and the interference suppression
capability by controlling the peak location of the main beam. As long
as the DOA estimation error is less than the half of the width of main
beam, the proposed beamformer will not suppress the Signal of Interest
(SOI) as interference. Numerical experiments prove the effectiveness
of the proposed method.

1. INTRODUCTION

Beamforming is an effective way to reach some specific criteria,
such as minimum variance and maximum signal-to-interference-plus-
noise ratio (SINR), by utilizing antenna arrays. The simplest way
of beamforming is data-independent beamforming [1]. The data-
dependent beamformer is more complex with better performance than
data-independent beamformer. A well-known representative example
is standard Capon beamformer (SCB) [2]. If the array steering vector
corresponding to the SOI is accurately known, the Capon beamformer
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has much better interference suppression capability than the data-
independent beamformer.

However, in many practical applications, the steering vector of
the SOI cannot be obtained precisely due to the differences between
the estimated signal DOA and the true DOA or between the assumed
array response and the true array response (array calibration errors).
With the imprecise SOI steering vector, the performance of the SCB
may be even worse than that of the data-independent beamformers [3].
In order to overcome this problem, the robust beamformer has to be
adopted.

Many approaches have been proposed to make the adaptive
beamformer robust against imprecise SOI steering vector. For the
typical array imperfection, i.e., DOA estimation error of SOI, many
solutions have been proposed, such as convex quadratic constraints [4],
Bayesian approach [5] and uncertainty set based method [6]. All these
methods belong to a class of popular robust beamforming methods,
the diagonal loading method [7]. However, the selection of the optimal
diagonal loading level is still not clear in practice.

Recently, some advanced robust methods have been proposed [8–
11]. In these papers, the array magnitude responses for the array
steering vectors in a polyhedron or sphere set are constrained to exceed
unity in optimization. It was proven that these beamformers also
belong to the family of the diagonal loading method [10]. If the
knowledge of the array steering vector uncertainty can be precise,
the diagonal loading level can be decided. However, it is not clear
how to choose the uncertainty in which the actual steering vector is
expected to lie [11]. There are also other diagonal loading methods
for the specific application [12], but it is not always useful. More
recently, there are very few papers concerned with the user parameter
free methods [13, 14].

In this paper, a totally different diagonal loading method is
proposed based on a very clear physical intuition. The main objective
of the proposed diagonal loading method is to deal with the estimated
DOA error, and the array calibration error is not included in this
paper. Firstly, a simulation is performed to obtain the insight into the
relationship between the beampattern and diagonal loading level. It
is observed that the peak of the main beam is moved with increasing
of the diagonal loading level. When the peak of the main beam is
located at the estimated DOA of SOI, the beamformer becomes robust
against the DOA estimation error. However, it is also observed that
the interference suppression capability is decreased with increasing
of the diagonal loading level. Therefore, there is a tradeoff between
the robustness and interference suppression capability. Then, a novel
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diagonal loading method is proposed.
In Section 2, the problem of interest is formulated. In Section 3,

the proposed diagonal loading method for robust beamforming is
presented. Numerical examples illustrating the performance of the
proposed method are given in Section 4. Finally, Section 5 contains
the conclusions.

2. PROBLEM FORMULATION

Consider a uniform linear array with M sensors illuminated by a
far field narrow band SOI and J uncorrelated interferers. With the
assumption that the noise is spatially white and uncorrelated with the
SOI and interferences, the received signal vector at the snapshot time
index k can be written as

y (k) = d (k) + i (k) + n (k) (1)
where y (k) is the vector of received signals. d (k), i (k) and n (k) are
the desired signal, interference and noise components, respectively.

With the assumption that the individual vector components of this
model are mutually uncorrelated, the theoretical covariance matrix R
of the array output vector can be denoted as follows.

R = σ2
0a0(θ0)aH

0 (θ0) +
J∑

j=1

σ2
jajaH

j + Q (2)

where R is the theoretical covariance matrix; σ2
0 and σ2

j are the powers
of the SOI and the interference; a0(θ0) and aj are the steering vectors
which are the functions of the location parameters of the emitting
sources (e.g., DOA); θ0 is the real DOA of SOI; (∗)H denotes the
conjugate transpose; and Q is the noise covariance matrix.

In practical applications, R cannot be obtained directly. It is
replaced by the sample covariance matrix R̂, where

R̂ =
1
K

K∑

k=1

y (k)yH (k) (3)

where R̂ is the sample covariance matrix, and K denotes the number of
snapshots. When there are enough snapshots, the estimated covariance
matrix R̂ is almost equal to the real covariance matrix R.

The SCB can be derived from the following linearly constrained
optimization problem

min
w

wHRw

subject to wHa0(θ0) = 1
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where w is the adaptive array weight.
The solution is easily derived

w0 =
R−1a0(θ0)

aH
0 (θ0)R−1a0(θ0)

(4)

When the adaptive array weight is obtained, the output signal
r (k) is therefore given by

r (k) = wH
0 y (k) (5)

As discussed previously, the performance of SCB may be even
worse than that of the data-independent beamformers if there is some
DOA estimation error of SOI. Then the SCB will heavily suppress the
SOI as interference to minimize the output power.

The diagonal loading method is a simple and effective way to make
the SCB more robust by adding a real weighting identity matrix to the
covariance matrix. The new adaptive array weight can be expressed
as

wd =
(R + λI)−1 a0(θ0 + ∆θ)

aH
0 (θ0 + ∆θ) (R + λI)−1 a0(θ0 + ∆θ)

(6)

where wd is the new adaptive array weight; the subscript d denotes
diagonal loading; ∆θ is the DOA error of SOI due to the estimator;
I is the identity matrix; and λ is the real diagonal loading level. To
simplify denotation, a0(θ + ∆θ) will be denoted as ā0 in the following
sections.

The quality of SOI estimation is typically measured by the signal-
to-interference-plus-noise ratio (SINR) as following

SINR =
σ2

0

∣∣wH
d a0

∣∣2

wH
d

(
J∑

j=1
σ2

j ajaH
j + Q

)
w

(7)

Although there are some works to determine the diagonal loading
level [7–11], most of these approaches either are in an ad-hoc way
or need user parameters that might not be available in practice.
Therefore, user parameter-free method to determine the diagonal
loading level is high desired.
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3. THE PROPOSED DIAGONAL LOADING METHOD

For the diagonal loading method, the amplitude response for the angle
θ can be expressed as

∣∣wH
d a (θ)

∣∣2 = aH (θ)wdwH
d a (θ) (8)

=
aH (θ) (λI + R)−1 ā0āH

0 (λI + R)−1 a (θ)[
āH

0 (λI + R)−1 ā0

]2 (9)

where a (θ) is the steering vector for the DOA θ (−90◦ ≤ θ ≤ 90◦).
The covariance matrix R is a positive definitive matrix and can

be expressed as
R =

∑

i

aivivi
H (10)

where ai is the eigenvalue, and vi is its corresponding eigenvector of
R. Therefore, the upper Equation (9) can be transformed as

∣∣wH
d a (θ)

∣∣2 =

(∑
i

aH(θ)viv
H
i ā0

ai+λ

)(∑
i

āH
0 viv

H
i a(θ)

ai+λ

)

(∑
i

āH
0 vivH

i ā0

ai+λ

)2 (11)

It is clear that the beampattern is relative to the diagonal loading
level. The beampatter will be changed with variable diagonal loading
level. In order to obtain the insight into the relationship between
diagonal loading level and array beampattern, a simulation is presented
in Fig. 1. The number of elements is M = 10. The DOAs of the SOI

 -80  -60  -40  -20 0 20 40 60 80
 -80

 -70

 -60

 -50

 -40

 -30

 -20

 -10

0

Angle (degree)

A
rr

a
y
 B

e
a
m

p
a
tt
e
rn

 (
d
B

)

= 0

=10

=10
3

=10
8

λ

λ

λ

λ

Figure 1. Comparison of the beampatterns of different diagonal
loading levels (∆θ = 4◦).
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and two interferences are 0◦, 60◦, 80◦. The powers of the SOI and two
interferences are σ2

0 = σ2
1 = σ2

2 = 10dB. The DOA estimation error of
the SOI is ∆θ = 4◦.

It is noticed in Fig. 1 that, when there exists a DOA estimation
error, the peak of the main beam is gradually moved toward the
estimated DOA with increasing diagonal loading level. When the
diagonal loading level is zero, the beamformer is transformed back
to SCB, and the SOI is suppressed heavily as interference. The
SOI suppression will be decreased with moving the peak toward the
estimated DOA. Hence, the beamformer becomes robust against the
DOA estimation error of SOI. However, it is also noticed that the
interference suppression capability is also decreased with increasing
the diagonal loading level.

Therefore, the following results can be obtained from Fig. 1, which
motivate the proposed diagonal loading method. The peak of the main
beam will be gradually moved toward the estimated DOA of SOI with
increasing diagonal loading level. The greater is the diagonal loading
level, the nearer to the estimated DOA is the peak of the main beam,
and the weaker is the interference suppression capability.

Remember that the main problem of the diagonal loading method
is how to determine the diagonal loading level which makes the
beamformer robust to the DOA estimation error of SOI. It is apparent
that an ideal solution is to move the maximum of the main beam to the
estimated DOA precisely. Then the allowable DOA estimation error
will be at least half of the width of the main beam. In this case, the
SOI will not be suppressed heavily as interference. Hence, in order to
find the ideal robust beamformer, the problem becomes how to move
the maximum of the main beam to the estimated DOA.

Throughout this paper, it is assumed that the DOA difference
between the SOI and any interference is greater than half of the width
of the main beam, and the broadside of the uniform linear array is
directed to the desired signal. In order to obtain the condition of the
peak locating at the estimated DOA, let us look into the main beam.
When the amplitude responses for the angles included in the main
beam are symmetrical centering at the estimated DOA of SOI, the
peak is located at the estimated DOA of SOI. Therefore, a sufficient
condition to ensure that the maximum located at the estimated DOA is
the exact left-right symmetry at the estimated DOA. It means that the
amplitude response according to the left is equal to that according to
the right. A direct method is to make the amplitude responses of θ̂0+δθ
and θ̂0 − δθ equal where the θ̂0 is the estimated DOA of SOI, and the
δθ is less than or equal to half of the width of the mainbeam. Without
loss of generality, we make δθ ≤ 1

2θmd. The θmd is the approximate
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width of the main beam which can be expressed as θmd = 50.7λ
Md [1].

Therefore, in order to find the ideal diagonal loading level, the
diagonal loading level should move the maximum to the estimated
DOA. Here, the ideal diagonal loading level is meant to assure that
the peak of the main beam is located at the estimated DOA of SOI.
Mathematically, it can be expressed as following

∣∣∣wH
d a

(
θ̂0 + δθ

)∣∣∣
2
−

∣∣∣wH
d a

(
θ̂0 − δθ

)∣∣∣
2

= 0 (12)

It means that the amplitude response at the θ̂0 + δθ is precisely equal
to that of the θ̂0 − δθ.

It is also observed from Fig. 1 that the peak of the main beam
locates the estimated DOA precisely when the λ →∞. With λ →∞,
the Capon beamformer becomes the classical beamformer, so the peak
of the main beam is always located at the estimated DOA of SOI.

Based on the observation from Fig. 1, the interference suppression
capability is the worst one when the diagonal loading level goes to
infinity. A possible explanation is as follows. In some cases, the
diagonal loading method may be explained to add white noise to the
received signal. Hence, when the diagonal loading level goes to infinity,
the added white noise also goes to infinity. Then, the interferences can
be omitted compared with the added white noise. Fortunately, there
exists a tradeoff between the robustness and interference suppression
capability by controlling the peak location of the main beam.

Then, the diagonal loading level can be obtained by making
∣∣∣wH

d a
(
θ̂0 + δθ

)∣∣∣
2
−

∣∣∣wH
d a

(
θ̂0 − δθ

)∣∣∣
2

= ε (13)

where ε can be regarded as the tradeoff parameter. The tradeoff
parameter controls the robustness and interference suppression
capability.

At the same time, it is also noted that the following function is
not convex function for all circumstances.

f(λ) =
∣∣∣wH

d a
(
θ̂0 + δθ

)∣∣∣
2
−

∣∣∣wH
d a

(
θ̂0 − δθ

)∣∣∣
2
− ε (14)

Therefore, there may exist multiple solutions. For all solutions,
the beamformers are same robust. However, the interference
suppression capability is different for different solutions. Remember
that the interference suppression capability will decrease with
increasing diagonal loading level. Therefore, the minimal diagonal
loading level among all solutions is desired. It is not necessary to find
all solutions. The problem is solved by finding the minimal solution.

As the function is not the convex, there is no guarantee to find
the minimal solution with any efficient method. However, many
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simulations prove that there is an efficient method to find a suitable
solution, e.g., a Newton’s method with the initial parameter λ = 0.
To simplify the process, we can make δθ = 1◦ which can ensure the
symmetry if the width of the main beam is greater than 2◦. A lot
of simulations indicate that the tradeoff parameter can be set to a
constant when the number of sensors is fixed, i.e., the width of the main
beam is approximately fixed. Therefore, there is no user parameter for
given array which is desired for many practical applications. It is also
important to point out that the diagonal loading method is useless
when the DOA estimation error is greater than half of the width of the
main beam as all other diagonal loading methods.

4. SIMULATION

In this section, the proposed diagonal loading method is compared with
the SCB and the method in the reference [10] (RCB) by simulations.
For all the simulations considered below, a uniform linear array is
assumed with M = 10 sensors and half-wavelength sensor spacing.
Enough snapshots are assumed, e.g., K = 200. The powers of the
two interferences are σ2

1 = σ2
2 = 20 dB, and the power of white noise

is 0 dB. The DOAs of two interferences are θ1 = 60◦ and θ2 = 80◦.
The real DOA of the SOI is θ0 = 0◦. For the RCB, according to [10],
the parameter of the array steering vector should be greater than the
corresponding uncertainty of the array steering vector, which is made
as 4.5 in all simulations. As the previous discussion, the approximate
width of main beam is fixed, and the tradeoff parameter is set to
constant as ε = 0.05 for the proposed method.

In Fig. 2 and Fig. 3, the beampatterns are compared for SCB,
RCB and the proposed method. The real vertical line and three dot
vertical lines denote the locations of real signal DOA, estimated signal
DOA, and interference DOAs, respectively. In Fig. 2, there is no
DOA estimation error, and the power of SOI is SNR = 10dB. The
beampattern of the proposed method is the same as that of SCB.
However, the RCB beampattern has no nulls at the DOAs of all
interferences. In this case, it is clear that the interference suppression
capability of the proposed method is better than that of RCB. In
Fig. 3, the DOA estimation error is ∆θ = 6◦, and the power of SOI is
SNR = 30 dB. Due to the DOA estimation error, the SCB and RCB
would heavily suppress the SOI as interference. However, the proposed
method would not suppress the SOI as interference because the DOA
estimation error is less than the half of width of the main beam. The
observations show that the proposed method is more robust than RCB
against the DOA estimation error.
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Figure 2. Comparison of the
beampatterns of SCB, RCB and
proposed method (∆θ = 0,
SNR = 10 dB, INR1 = INR2 =
20dB).
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Figure 3. Comparison of the
beampatterns of SCB, RCB and
proposed method (∆θ = 6◦,
SNR = 30dB, INR1 = INR2 =
20dB).
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Figure 4. Comparison of the
SINRs of SCB, RCB and pro-
posed method (∆θ = 3◦, INR1 =
INR2 = 20 dB).
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Figure 5. Comparison of the
SINRs of SCB, RCB and pro-
posed method (SNR = 30 dB,
INR1 = INR2 = 20 dB).

In Fig. 4 and Fig. 5, the output SINRs are compared for the SCB,
RCB and the proposed method. Here, the output SINRs is defined
as Equation (7). For Fig. 4, the DOA estimation error is fixed as
∆θ = 3◦. We vary the SNR by changing the power of SOI. For low
SNR, the SINR of the proposed method is almost the same as that
of RCB. However, for high SNR, the SINR of the proposed method
is greater than that of RCB. It indicates that the proposed method
is more robust than RCB against SNR. In Fig. 5, the SNR is fixed



254 Wang, Wu, and Liang

as 30 dB, and the DOA estimation error is variable. With some DOA
estimation error, the SINR of the proposed method is almost same as
the RCB except the zero DOA estimation error. The greater is the
DOA estimation error, the higher is the SINR of the proposed method
than the RCB. It indicates that the proposed method is more robust
than the RCB against DOA estimation error.

5. CONCLUSION

In this paper, a novel diagonal loading method for robust beamforming
is proposed. The motivation is based on the observations that the
peak of the main beam will be shifted with the diagonal loading
level when there exists a DOA estimation error. An ideal solution
is to make the maximum of the main beam locate at the estimated
DOA. It is achieved with the diagonal loading level going to infinity,
and the SOI will not be suppressed as interference. However,
the interference suppression capability will decrease with increasing
diagonal loading level. Therefore, there exists a tradeoff between the
robustness and interference suppression capability. In order to make
the beamformer robust, the proposed diagonal loading method locates
the maximum of the mainbeam almost at the estimated DOA. The
proposed beamformer is robust when the DOA estimation error is less
than half of the width of the main beam. The simulations show that
the proposed method is more robust than the RCB and that there is
no user parameter for any given uniform linear array.
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