PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 104 > pp. 385-401

ELECTROMAGNETIC SCATTERING BY CONDUCTING BOR COATED WITH CHIRAL MEDIA ABOVE A LOSSY HALF-SPACE

By D.-Z. Ding and R.-S. Chen

Full Article PDF (486 KB)

Abstract:
Electromagnetic scattering by conducting bodies of revolution (BOR) coated with homogeneous chiral media above a lossy half-space is formulated in terms of the Poggio-Miller-Chang-Harrington-Wu surface integral equation combined with combined field integral equation. A field decomposition scheme is utilized to split a chiral media into two equivalent homogeneous media. The spatial domain half-space Green's functions are obtained via the discrete complex image method. Due to the rotational symmetry property of BOR, the method of moment for BOR (BORMoM) is applied to the linear system solved by the multifrontal direct solver. Numerical results are presented to demonstrate the accuracy and efficiency of the proposed method.

Citation:
D.-Z. Ding and R.-S. Chen, "Electromagnetic Scattering by Conducting Bor Coated with Chiral Media Above a Lossy Half-Space," Progress In Electromagnetics Research, Vol. 104, 385-401, 2010.
doi:10.2528/PIER10021004
http://www.jpier.org/PIER/pier.php?paper=10021004

References:
1. Dong, J. and C. Xu, "Characteristics of guided modes in planar chiral nihility meta-material waveguides," Progress In Electromagnetics Research B, Vol. 14, 107-126, 2009.
doi:10.2528/PIERB09012201

2. Hsu, H.-T. and C.-J. Wu, "Design rules for a Fabry-Perot narrow band transmission filter containing a metamaterial negative-index defect," Progress In Electromagnetics Research Letters, Vol. 9, 101-107, 2009.
doi:10.2528/PIERL09032803

3. Illahi, A. and Q. A. Naqvi, "Study of focusing of electromagnetic waves re┬░ected by a PEMC backed chiral nihility reflector using Maslov's method," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 863-873, 2009.
doi:10.1163/156939309788355216

4. Varadan, V. K., V. V. Varadan, and A. Lakhtakia, "On the possibility of designing anti-reflection coatings using chiral materials," J. Wave-Mater. Interact., Vol. 2, No. 1, 71-81, 1987.

5. Bohren, C. F. and F. Craig, "Light scattering by an optically active sphere," Chem. Phys. Lett., Vol. 29, No. 3, 458-462, Dec. 1974.
doi:10.1016/0009-2614(74)85144-4

6. Bohren, C. F., "Scattering of electromagnetic waves by an optically active cylinder," J. Colloid Interface, Sci., Vol. 66, No. 1, 105-109, Aug. 1978.
doi:10.1016/0021-9797(78)90189-3

7. Chittayil, K. and A. Lakhtakia, "Electromagnetic scattering by a chiral cylinder immersed in another chiral medium," Optik, Vol. 89, 59-64, 1991.

8. Kluskens, M. S. and E. H. Newman, "Scattering by a chiral cylinder of arbitrary cross section," IEEE Trans. Antennas Propag., Vol. 38, No. 9, 1448-1455, Sep. 1990.
doi:10.1109/8.56998

9. Lakhtakia, A. and B. Shanker, "Beltrami fields within continuous source regions, volume integral equations, scattering algorithms, and the extended Maxwell-Garnett model," Int. J. Appl. Electromagn. Mater., Vol. 4, 65-82, 1993.

10. Rojas, R. G., "Integral equations for EM scattering by homogeneous/inhomogeneous two-dimensional chiral bodies," Inst. Elect. Eng. Microw., Antennas Propag., Vol. 141, No. 5, 385-392, May 1994.
doi:10.1049/ip-map:19941267

11. Lakhtakia, A., V. K. Varadan, and V. V. Varadan, "Scattering and absorption characteristics of lossy dielectric, chiral, nonspherical objects," Applied Optics, Vol. 24, 4146-4154, 1985.
doi:10.1364/AO.24.004146

12. Lakhtakia, A., "The extended boundary condition method for scattering by a chiral scatterer in a chiral medium: Formulation and analysis ," Optik, Vol. 86, 155-161, 1991.

13. Zhang, Y. J., A. Bauer, and E. P. Li, "T-matrix analysis of multiple scattering from parallel semi-circular channels filled with chiral media in a conducting plane," Progress In Electromagnetics Research, Vol. 53, 299-318, 2009.

14. Worasawate, D., J. R. Mautz, and E. Arvas, "Electromagnetic scattering from an arbitrarily shaped three-dimensional homogeneous chiral body," IEEE Trans. Antennas Propag., Vol. 51, No. 5, 1077-1084, 2003.
doi:10.1109/TAP.2003.811501

15. Yuceer, M., J. R. Mautz, and E. Arvas, "Moment of methods solution for the radar cross section of a chiral body of revolution," IEEE Trans. Antennas Propag., Vol. 53, 1163-1167, 2005.
doi:10.1109/TAP.2004.842664

16. Dunn, E. A., J.-K. Byun, E. D. Branch, and J.-M. Jin, "Numerical simulation of BOR scattering and radiation using a higher order FEM ," IEEE Trans. Antennas Propag., Vol. 54, No. 3, 945-952, Mar. 2006.
doi:10.1109/TAP.2006.869936

17. Chen, J. and J. G. Wang, "A novel body-of-revolution finite-difference time-domain method with weakly conditional stability," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 6, 377-399, Jun. 2008.
doi:10.1109/LMWC.2008.922574

18. Demir, V., A. Z. Elsherbeni, and E. Arvas, "FDTD formulation for dispersive chiral media using the transform method," IEEE Trans. Antennas Propag., Vol. 53, No. 10, 3374-3384, Oct. 2005.
doi:10.1109/TAP.2005.856328

19. Semichaevsky, A., A. Akyurtlu, D. Kern, D. H. Werner, and M. G. Bray, "Novel BI-FDTD approach for the analysis of chiral cylinders and spheres," IEEE Trans. Antennas Propag., Vol. 54, No. 3, 925-932, Mar. 2006.
doi:10.1109/TAP.2006.869898

20. Wang, X. D., H. W. Douglas, L. W. Li, and Y. B. Gan, "Interaction of electromagnetic waves with 3-D arbitrarily shaped homogeneous chiral targets in the presence of a lossy half space," IEEE Trans. Antennas Propag., Vol. 55, No. 12, 3647-3655, Dec. 2007.
doi:10.1109/TAP.2007.910336

21. Chen, R. S., Y. Q. Hu, Z. H. Fan, D. Z. Ding, D. X. Wang, and E. K. N. Yung, "An efficient surface integral equation solution to EM scattering by chiral objects above a lossy half space," IEEE Trans. Antennas Propag., Vol. 57, No. 11, 3586-3593, 2009.
doi:10.1109/TAP.2009.2023628

22. Wang, D. X., P. Y. Lau, E. K. N. Yung, and R. S. Chen, "Scattering by conducting bodies coated with bi-isotropic materials," IEEE Trans. Antennas Propag., Vol. 55, No. 8, 2313-2319, Aug. 2007.
doi:10.1109/TAP.2007.901850

23. Ding, D.-Z., R.-S. Chen, and Z. H. Fan, "SSOR preconditioned inner-outer flexible GMRES method for MLFMM analysis of scattering of open objects," Progress In Electromagnetics Research, Vol. 89, 339-357, 2009.
doi:10.2528/PIER08112601

24. Ding, D. Z., R. S. Chen, Z. H. Fan, and P. L. Rui, "A novel hierarchical two-level spectral preconditioning technique for multilevel fast multipole analysis of electromagnetic wave scattering ," IEEE Trans. Antennas Propag., Vol. 56, No. 4, 1122-1132, Apr. 2008.
doi:10.1109/TAP.2008.919188

25. Umashankar, K., A. Taove, and S. M. Rao, "Electromagnetic scattering by arbitrarily shaped three-dimensional homogeneous lossy dielectric objects ," IEEE Trans. Antennas Propag., Vol. 34, No. 6, 758-766, 1986.
doi:10.1109/TAP.1986.1143894

26. He, J. Q., T. J. Yu, N. Geng, and L. Carin, "Moment of methods analysis of electromagnetic scattering from a general three-dimensional dielectric target embedded in a multilayered medium," Radio Sci., Vol. 35, 305-313, Mar.-Apr. 2000.

27. He, J. Q., A. Sullivan, and L. Carin, "Multilevel fast multipole algorithm for three-dimensional dielectric targets in the vicinity of a lossy half space ," Microw. Opt. Tech. Lett., Vol. 29, No. 2, 100-104, Apr. 2001.
doi:10.1002/mop.1097

28. Ding, D.-Z., R.-S. Chen, and Z. H. Fan, "Application of two-step spectral preconditioning technique for electromagnetic scattering in half-space ," Progress In Electromagnetics Research, Vol. 94, 383-402, 2009.
doi:10.2528/PIER09060906

29. Aksun, M. I., "A robust approach for the derivation of closed-form Green's functions ," IEEE Trans. Microwave Theory and Techique, Vol. 44, 651-658, May 1996.
doi:10.1109/22.493917

30. Michalski, K. A. and D. Zheng, "Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, part I: Theroy," IEEE Trans. Antennas Propag., Vol. 38, 335-344, Mar. 1990.
doi:10.1109/8.52240

31. Chen, R. S., L. Mo, and E. K. N. Yung, "Multifrontal method preconditioned GMRES-FFT algorithm for fast analysis of microstrip circuits ," International Journal for Computational and Mathematics in Electrical and Electronic Engineering, Vol. 24, No. 1, 94-106, 2005.
doi:10.1108/03321640510571075


© Copyright 2014 EMW Publishing. All Rights Reserved