1. Strikwerda, J., Finite Difference Schemes and Partial Differential Equations, 2nd Ed., SIAM, 2004.
doi:10.1137/1.9780898717938
2. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., 2005.
3. Solin, P., K. Segeth, and I. Dolezel, Higher-order Finite Element Methods, Chapman & Hall/CRC Press, 2003.
doi:10.1201/9780203488041
4. Strang, G. and G. Fix, An Analysis of The Finite Element Method, Prentice Hall, 1973.
5. Rao, S. M., D. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antenna Prop., Vol. 30, No. 3, 1982. Google Scholar
6. Annigeri, B. S. and K. Tseng, "Boundary element methods in engineering," Proceedings of the International Symposium on Boundary Element Methods: Advances in Solid and Fluid Mechanics, 1989. Google Scholar
7. Lee, J., R. Lee, and A. Cangellaris, "Time-domain finite-element methods," IEEE Trans. Antenna Prop., Vol. 45, No. 3, 1997. Google Scholar
8. Chew, W. C., "Computational electromagnetics: The physics of smooth versus oscillatory fields," Phil. Trans. R. Soc. Lond. A, No. 12, 2004. Google Scholar
9. Engheta, N., W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, "The fast multipole method, FMM for electromagnetic scattering problems," IEEE Trans. Antenna Prop., Vol. 40, No. 6, 1992. Google Scholar
10. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Ant. and Prop. Magazine, Vol. 35, 1993. Google Scholar
11. Rokhlin, V., "Rapid solution of integral equations of scattering theory in two dimensions," J. Computational Phys., Vol. 86, No. 2, 1990. Google Scholar
12. Song, J., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antenna Prop., Vol. 45, No. 10, 1997. Google Scholar
13. Phillips, J. R. and J. K. White, "A precorrected-FFT method for electrostatic analysis of complicated 3-D structures," IEEE Trans. Computer-Aided Design Integration Circuits Syst., Vol. 16, No. 10, 1997.
doi:10.1109/43.662670 Google Scholar
14. Seo, S. M. and J. Lee, "A fast IE-FFT algorithm for solving PEC scattering problems," IEEE Transactions on Magnetics, Vol. 41, No. 5, 2005. Google Scholar
15. Barrowes, B., F. Teixeira, and J. Kong, "Fast algorithm for matrix-vector multiply of asymmetric multilevel block-toeplitz matrices," Antennas and Propagation Society International Symposium, 2001. Google Scholar
16. Li, M. and W. C. Chew, "Multiscale simulation of complex structures using equivalence principle algorithm with high-order field point sampling scheme," IEEE Trans. Antenna Prop., Vol. 56, No. 8, 2008. Google Scholar
17. Li, M. and W. C. Chew, "Wave-field interaction with complex structures using equivalence principle algorithm," IEEE Trans. Antenna Prop., Vol. 55, No. 1, 2007. Google Scholar
18. Burner, D., M. Junge, P. Rapp, M. Bebendorf, and L. Gau, "Comparison of the fast multipole method with hierarchical matrices for the Helmholtz-BEM," CMES, Vol. 58, No. 2, 2010. Google Scholar
19. Banjai, L. and W. Hackbusch, "Hierarchical matrix techniques for low and high frequency Helmholtz problems," IMA Journal of Numer. Anal., Vol. 28, No. 4, 2008. Google Scholar
20. Della Giovampaola, C. and N. Engheta, "Digital Metamaterials," Nat. Mater., Vol. 13, No. 12, 2014.
doi:10.1038/nmat4082 Google Scholar
21. Johnson, P. and R. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 1972.
doi:10.1103/PhysRevB.6.4370 Google Scholar
22. Malitson, I. H., "Interspecimen comparison of the refractive index of fused silica," JOSA, Vol. 55, 1965. Google Scholar
23. Memarzadeh, B. and H. Mosallaei, "Array of planar plasmonic scatterers functioning as light concentrator," Optics Letters, Vol. 36, 2011. Google Scholar
24. Memarzadeh, B. and H. Mosallaei, "Multimaterial loops as the building block for a functional metasurface," J. Opt. Soc. Am. B, Vol. 30, No. 7, 2013.
doi:10.1364/JOSAB.30.001827 Google Scholar
25. Cheng, J. and H. Mosallaie, "Optical metasurfaces for beam scanning in space," Optics Letters, Vol. 39, No. 9, 2014.
doi:10.1364/OL.39.002719 Google Scholar
26. Monticone, F., N. Mohammadi Estakhri, and A. Alu, "Full control of nanoscale optical transmission with a composite metascreen," Physical Review Letters, Vol. 110, No. 20, 2013.
doi:10.1103/PhysRevLett.110.203903 Google Scholar
27. Pfeiffer, C. and A. Grbic, "Cascaded metasurfaces for complete phase and polarization control," Applied Physics Letters, Vol. 102, No. 23, 2013.
doi:10.1063/1.4810873 Google Scholar
28. Ansari-Oghol-Beig, D. and H. Mosalaei, "Array IE-FFT solver for simulation of supercells and aperiodic penetrable metamaterials," Journal of Computational and Theoretical Nanoscience, Vol. 12, No. 10, 2015. Google Scholar
29. Araujo, M. G., J. M. Taboada, J. Rivero, and F. Obelleiro, "Comprison of surface integral equations for left-handed materials," Progress In Electromagnetics Research, Vol. 118, 425-440, 2011.
doi:10.2528/PIER11031110 Google Scholar