Vol. 64
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2015-11-18
Resonant States in Waveguide Transmission Problems
By
Progress In Electromagnetics Research B, Vol. 64, 119-143, 2015
Abstract
We prove the existence of complex eigenfrequencies of open waveguide resonators in the form of parallel-plate waveguides and waveguides of rectangular crosssection containing layered dielectric inclusions. It is shown that complex eigenfrequencies are finite-multiplicity poles of the analytical continuation of the operator of the initial diffraction problem and its Green's function to a multi-sheet Riemann surface, and also of the transmission coefficient extended to the complex plane of some of the problem parameters. The eigenfrequencies are associated with resonant states (RSs) and eigenvalues of distinct families of Sturm-Liouville problems on the line; they form countable sets of points in the complex plane with the only accumulation point at infinity and depend continuously on the problem parameters. The set of complex eigenfrequencies is similar in its structure to the set of eigenvalues of a Laplacian in a rectangle. The presence of a resonance domain in the form of a parallel-plane layered dielectric insert removes the continuous frequency spectrum and gives rise to a discrete set of points shifted to (upper half of) the complex plane.
Citation
Yury V. Shestopalov, "Resonant States in Waveguide Transmission Problems," Progress In Electromagnetics Research B, Vol. 64, 119-143, 2015.
doi:10.2528/PIERB15083001
References

1. Shestopalov, Y., Y. Smirnov, and E. Derevyanchuk, "Permittivity reconstruction of layered dielectrics in a rectangular waveguide from the transmission coefficient at different frequencies," Springer Proceedings in Mathematics and Statistics, Vol. 52, No. XII, 169-181, 2013.

2. Shestopalov, Y., Y. Smirnov, and E. Derevyanchuk, "Inverse problem method for complex permittivity reconstruction of layered media in a rectangular waveguide," Phys. Status Solidi C, 1-6, 2014.

3. Gamow, G., "Zur quantentheorie des atomkernes," Z. Phys., Vol. 51, 204-212, 1928.
doi:10.1007/BF01343196

4. Armitage, L. J., et al. "Resonant-state expansion applied to planar waveguides," Phys. Rev. A, Vol. 89, 053831, 2014.

5. Shestopalov, Y. and V. Shestopalov, Spectral Theory and Excitation of Open Structures, The IEE Peter Peregrinus, London, 1996.
doi:10.1049/PBEW042E

6. Brovenko, A., P. Melezhik, and A. Poedinchuk, "Spectral problems in the theory of diffraction of waves on layered media," Telecommunications and Radio Engineering, Vol. 72, 1821-1838, 2013.
doi:10.1615/TelecomRadEng.v72.i20.10

7. Colton, A. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, Berlin, 1998.
doi:10.1007/978-3-662-03537-5

8. Shestopalov, V. and Y. Sirenko, Dynamical Theory of Gratings, Naukova Dumka, Kiev, 1989.