Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 24 > pp. 251-264


By A. Cala' Lesina, A. Vaccari, and A. Bozzoli

Full Article PDF (441 KB)

One of the main techniques for the Finite-Difference Time-Domain (FDTD) analysis of dispersive media is the Recursive Convolution (RC) method. The idea here proposed for calculating the updating FDTD equation is based on the Laplace transform and is applied to the Drude dispersion case. A modified RC-FDTD algorithm is then deduced. We test our algorithm by simulating gold and silver nanospheres exposed to an optical plane wave and comparing the results with the analytical solution. The modified algorithm guarantees a better overall accuracy of the solution, in particular at the plasmonic resonance frequencies.

A. Cala' Lesina, A. Vaccari, and A. Bozzoli, "A novel RC-FDTD algorithm for the Drude dispersion analysis," Progress In Electromagnetics Research M, Vol. 24, 251-264, 2012.

1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. on Antennas and Propagat., Vol. 14, No. 3, 302-307, 1966.

2. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, Norwood, MA, 2005.

3. Roden, J. A. and S. D. Gedney, "Convolution PML (CPML): An efficient FDTF implementation of the CFS-PML for arbitrary media," Microwave and Optical Technology Letters, Vol. 27, No. 5, 334-339, 2000.

4. Sullivan, D. M., "Frequency-dependent FDTD methods using Z transforms," IEEE Trans. on Antennas and Propagat., Vol. 40, 1223-1230, 1992.

5. Gandhi, O. P., B.-H. Gao, and J.-Y. Chen, "A frequency-dependent finite-difference time-domain formulation for general dispersive media," IEEE Trans. on Microwave Theory and Tech., Vol. 41, 658-665, 1993.

6. Young, J. L., "Propagation in linear dispersive media: Finite difference time-domain methodologies," IEEE Trans. on Antennas and Propagat., Vol. 43, 422-426, 1995.

7. Pereda, J. A., L. A. Vielva, A. Vegas, and A. Prieto, "Statespace approach to the FDTD formulation for dispersive media," IEEE Trans. on Magn., Vol. 31, 1602-1605, 1995.

8. Kelly, D. F. and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. on Antennas and Propagat., Vol. 44, 792-797, 1996.

9. Okoniewski, M., M. Mrozowski, and M. A. Stuchly, "Simple treatment of multi-term dispersion in FDTD," IEEE Microwave Guided Wave Lett., Vol. 7, 121-123, 1997.

10. Chen, Q., M. Katsuari, and P. H. Aoyagi, "An FDTD formulation for dispersive media using a current density," IEEE Trans. on Antennas and Propagat., Vol. 46, 1739-1746, 1998.

11. Pereda, J. A. , A. Vegas, and A. Prieto, "FDTD modeling of wave propagation in dispersive media by using the Mobius transformation technique," IEEE Trans. on Microwave Theory and Tech., Vol. 50, 1689-1695, 2002.

12. Okoniewski, M. and E. Okoniewska, "Drude dispersion in ADE FDTD revisited," Electronics Letters, Vol. 42, No. 9, 503-504, 2006.

13. Kong, S., J. J. Simpson, and V. Backman, "ADE-FDTD scattered-field formulation for dispersive materials," IEEE Microwave and Wireless Components Lett., Vol. 18, No. 1, 4-6, Jan. 1, 2008.

14. Shibayama, J., et al., "Simple trapezoidal recursive convolution technique for the frequency-dependent FDTD analysis of a drude-lorentz model," IEEE Photonics Technology Letters, Vol. 21, No. 2, 100-102, Jan. 15, 2009.

15. Alsunaidi, M. A. and A. A. Al-Jabr, "A general ADE-FDTD algorithm for the simulation of dispersive structures," IEEE Photonics Technology Letters, Vol. 21, No. 12, 817-819, Jun. 15, 2009.

16. Zhang, Y.-Q. and D.-B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.

17. Luebbers, R. J., F. Hunsberger, and K.S. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma," IEEE Trans. on Antennas and Propagat., Vol. 39, No. 1, 29-34, 1991.

18. Kolwas, K., A. Derkachova, and M. Shopa, "Size characteristics of surface plasmons and their manifestation in scattering properties of metal particles," Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 110, 1490-1501, 2009.

19. Lee, K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "mplementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonics application," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011.

20. Paris, A., A. Vaccari, A. Cala' Lesina, E. Serra, and L. Calliari, "Plasmonic scattering by metal nanoparticles for solar cells," Plasmonics, 1-10, March 8, 2012.

21. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York and London, 1941.

22. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1998.

23. Laakso, I., S. Ilvonen, and T. Uusitupa, "Performance of convolutional PML absorbing boundary conditions in finite-difference time-domain SAR calculations," Phys. Med. Biol. , Vol. 52, 7183-7192, 2007.

24. Pontalti, R. , L. Cristoforetti, and L. Cescatti, "The frequency dependent FD-TD method for multi-frequency results in microwave hyperthermia treatment simulation," Phys. Med. Biol., Vol. 38, 1283-1298, 1993.

25. Vaccari, A., R. Pontalti, C. Malacarne, and L. Cristoforetti, "A robust and eĀ±cient subgridding algorithm for finite-difference time-domain simulations of Maxwell's equations," J. Comput. Phys., Vol. 194, 117-139, 2003.

© Copyright 2010 EMW Publishing. All Rights Reserved