Vol. 97
Latest Volume
All Volumes
2009-10-22
Practical Limitations of an Invisibility Cloak
By
Progress In Electromagnetics Research, Vol. 97, 407-416, 2009
Abstract
We studied the practical limitations of a linearly transformed invisibility cloak due to the loss and discretization. We found that in order for the cloaking applications to be practically useful, for example, to reduce the scattering by two orders, the maximum loss tangent allowed in the cloak needs to be of or within the order of 0.01, which also limits the radius of a concealed object to be roughly within one wavelength. For a large cloak, if its size is increased by one order, the maximum allowed loss tangent needs to be reduced by one order accordingly. For discretization, we studied both lossless and lossy cases and found that a little loss will expedite the convergence of scattering with increase of the number of layers. Insufficient layers may increase the scattering and thus make the object more visible instead of invisible.
Citation
Baile Zhang, Hongsheng Chen, and Bae-Ian Wu, "Practical Limitations of an Invisibility Cloak," Progress In Electromagnetics Research, Vol. 97, 407-416, 2009.
doi:10.2528/PIER09100704
References

1. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907

2. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777-1780, 2006.
doi:10.1126/science.1126493

3. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628

4. Cummer, S. A., B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E, Vol. 74, 036621, 2006.
doi:10.1103/PhysRevE.74.036621

5. Chen, H., B.-I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Phys. Rev. Lett., Vol. 99, 063903, 2007.
doi:10.1103/PhysRevLett.99.063903

6. Zhang, B., H. Chen, B.-I. Wu, Y. Luo, L. X. Ran, and J. A. Kong, "Response of a cylindrical invisibility cloak to electromagentic waves," Phys. Rev. B, Vol. 76, 121101, 2007.
doi:10.1103/PhysRevB.76.121101

7. Zhang, B., H. Chen, B.-I. Wu, and J. A. Kong, "Extraordinary surface voltage effect in the invisibility cloak with an actice device inside," Phys. Rev. Lett., Vol. 100, 063904, 2008.
doi:10.1103/PhysRevLett.100.063904

8. Zhang, B., B.-I. Wu, H. Chen, and J. A. Kong, "Rainbow and blueshift effect of a dispersive spherical invisibility cloak impinged on by a nonmonochromatic plane wave," Phys. Rev. Lett., Vol. 101, 063902, 2008.
doi:10.1103/PhysRevLett.101.063902

9. Ruan, Z., M. Yan, C. W. Neff, and M. Qiu, "Ideal cylindrical cloak: Perfect but sensitive to tiny perturbations," Phys. Rev. Lett., Vol. 99, 113903, 2007.
doi:10.1103/PhysRevLett.99.113903

10. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Phot. , Vol. 1, 224-227, 2007.
doi:10.1038/nphoton.2007.28

11. Cheng, X., H. Chen, B.-I. Wu, and J. A. Kong, "Cloak for bianisotropic and moving media," Progress In Electromagnetics Research, Vol. 89, 199-212, 2009.
doi:10.2528/PIER08120803

12. Cheng, Q., W. X. Jiang, and T. J. Cui, "Investigations of the electromagnetic properties of three-dimensional arbitrarily-shaped cloaks," Progress In Electromagnetics Research, Vol. 94, 105-117, 2009.
doi:10.2528/PIER09060705

13. Zhang, J. J., Y. Luo, H. Chen, and B.-I. Wu, "Sensitivity of transformation cloak in engineering," Progress In Electromagnetics Research, Vol. 84, 93-104, 2008.
doi:10.2528/PIER08071301

14. Alu, A. and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E, Vol. 72, 016623, 2005.
doi:10.1103/PhysRevE.72.016623

15. Sihvola, A. H., "Peculiarities in the dielectric response of negative-permittivity scatterers," Progress In Electromagnetics Research, Vol. 66, 191-198, 2006.
doi:10.2528/PIER06112001

16. Milton, G. W. and N.-A. P. Picorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. A, Vol. 462, 3027-3059, 2006.
doi:10.1098/rspa.2006.1715

17. Pendry, J. B, A. Holden, W. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev.Lett., Vol. 76, 4773-1776, 1996.
doi:10.1103/PhysRevLett.76.4773

18. Valentine, J., S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature, Vol. 455, 376-379, 2008.
doi:10.1038/nature07247

19. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, New York, 1995.

20. Xi, S., H. Chen, B.-I. Wu, B. Zhang, J. Huangfu, D. Wang, and J. A. Kong, "Effects of different transformations on the performance of cylindrical cloaks," Journal of Electromagnetic Waves and Applications, Vol. 22, 1489-1497, 2008.
doi:10.1163/156939308786390166

21. Vafi, K., A. R. Javan Maleki, M. S. Abrishamian, and N. Granpayeh, "Dispersive behavior of plasmonic and metamaterial coating on achieving transparency," Journal of Electromagnetic Waves and Applications, Vol. 22, 941-952, 2008.
doi:10.1163/156939308784150137