Vol. 117
Latest Volume
All Volumes
2011-06-13
Improving Silicon Integrated Antennas by Substrate Micromachining: a Study of Etching Patterns
By
Progress In Electromagnetics Research, Vol. 117, 365-378, 2011
Abstract
One of the main drawbacks of antenna integration on standard CMOS silicon substrates are the low radiation efficiency levels obtained due to the high silicon losses. This paper studies the use of micromachining techniques to remove silicon beneath the antenna as a solution to improve radiation efficiency. Several etching patterns are analyzed for different etching depths through simulations and measurements in order to find out which are the best ones for the micromachining process. Results are verified in two operating scenarios.
Citation
Joan Gemio, Josep Parron, Pedro de Paco, J. Sacristan, and Antonio Baldi, "Improving Silicon Integrated Antennas by Substrate Micromachining: a Study of Etching Patterns," Progress In Electromagnetics Research, Vol. 117, 365-378, 2011.
doi:10.2528/PIER11050501
References

1. Kenneth, K. O. et al, "On-chip antennas in silicon ICs and their applications," IEEE Transactions on Electron Devices, Vol. 52, No. 7, 1312-1323, 2005.
doi:10.1109/TED.2005.850668

2. Pinto, Y., C. Person, D. Gloria, A. Cathelin, D. Belot, and R. Plana, "Hybrid integrated antenna for automotive short range radar applications at 79 GHz," Proceedings of the 38th European Microwave Conference, 2008.

3. Soliman, E. A., S. Sedky, M. O. Sallam, S. Hassan, O. El Katteb, A. K. S. Abdel Aziz, and M. Refaat, "Novel MEMS dipole/monopole antenna for wireless systems operating at 77 GHz," PIERS Online, Vol. 6, No. 6, 547-550, 2010.
doi:10.2529/PIERS091219072654

4. Hsu, S.-S., K.-C. Wei, C.-Y. Hsu, and H.-R. Chuang, "A 60 GHz millimeter wave CPW Fed Yagi antenna fabricated by using 0.18 μm CMOS technology ," IEEE Electron Device Letters, Vol. 29, No. 6, 625-627, 2008.
doi:10.1109/LED.2008.920852

5. Lin, J., L. Gao, A. Sugavanam, X. Guo, R. Li, J. E. Brewer, and K. O. Kenneth, "Integrated antennas on silicon substrates for communication over free space," IEEE Electron Device Letters, Vol. 25, No. 4, 196-198, 2004.
doi:10.1109/LED.2004.824837

6. Lin, J., X. Guo, R. Li, J. Branch, J. E. Brewer, and K. O. Kenneth, "10 £ improvement of power transmission over free space using integrated antennas on silicon substrates," IEEE Custom Integrated Circuits Conference, 697-700, 2004.

7. Jahanbakht, M. and A. A. Lotfi Neyestanak, "Coplanar MEMS phased array antenna using koch fractal geometry," Progress In Electromagnetics Research M, Vol. 17, 29-42, 2011.

8. Cao, C., Y. Ding, X. Yang, J. Lin, H. Wu, A. Verma, J. Lin, F. Martin, and K. O. Kenneth, "A 24 GHz transmitter with on-chip dipole antenna in 0.13μm CMOS," IEEE Journal of Solid-State Circuits, Vol. 43, No. 6, 1394-1402, 2008.
doi:10.1109/JSSC.2008.922734

9. Klemm, M. and G. Troester, "EM energy absorption in the human body tissues due to UWB antennas," Progress In Electromagnetics Research, Vol. 62, 261-280, 2006.
doi:10.2528/PIER06040601

10. Gemio, J., J. Parron, and J. Soler, "Human body effects on implantable antennas for ISM bands applications: Models comparison and propagation losses study," Progress In Electromagnetics Research, Vol. 110, 437-452, 2010.
doi:10.2528/PIER10102604

11. Sabbah, A. I., N. I. Dib, and M. A. Al-Nimr, "SAR and temperature elevation in a multilayered human head model due to an obliquely incident plane wave," Progress In Electromagnetics Research M, Vol. 13, 95-108, 2010.
doi:10.2528/PIERM10051502

12. Gemio, J., J. Parron, J. Sacristan, F. Vila, F. Serra-Graells, A. Baldi, and P. De Paco , "Miniaturization techniques applied to standard CMOS technology integrated antennas," Proceedings of the 4th European Conference on Antennas and Propagation, 2010.

13. Lin, J., H. Wu, Y. Su, L. Gao, A. Sugavanam, J. E. Brewer, and K. O. Kenneth, "Communication using antennas fabricated in silicon integrated circuits," IEEE Journal of Solid-State Circuits, Vol. 42, No. 8, 1678-1687, 2007.
doi:10.1109/JSSC.2007.900236

14. Yan, J. and R. D. Murch, "Fabrication of a wideband antenna on a low-resistivity silicon substrate using a novel micromachining technique," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 476-479, 2007.
doi:10.1109/LAWP.2007.907053

15. Zhang, Y. P., M. Sun, and L. H. Guo, "On-chip antennas for 60 GHz radios in silicon technology," IEEE Transactions on Electron Devices, Vol. 52, No. 7, 1664-1668, 2005.
doi:10.1109/TED.2005.850628

16. Ojefors, E., K. Grenier, L. Mazenq, F. Bouchriha, A. Rydberg, and R. Plana, "Micromachined inverted F antenna for integration on low resistivity silicon substrates ," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 10, 627-629, 2005.
doi:10.1109/LMWC.2005.856693

17. Zhang, Z. Y., G. Fu, and S. L. Zuo, "A miniature sleeve meander antenna for TPMS application," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 1835-1842, 2009.
doi:10.1163/156939309789932575

18. Li, F., L. S. Ren, G. Zhao, and Y. C. Jiao, "Compact triple band monopole antenna with C-shaped and S-shaped meander strips for WLAN/WIMAX applications," Progress In Electromagnetics Research Letters, Vol. 15, 107-116, 2010.
doi:10.2528/PIERL10052004

19. Liu, Y., M. Luk, and H. C. Yin, "A RFID tag metal antenna on a compact HIS substrate," Progress In Electromagnetics Research Letters, Vol. 18, 15-59, 2010.

20. Teisbak, H. B. and K. B. Jakobsen, "Koch-fractal Yagi-Uda antenna," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 149-160, 2009.
doi:10.1163/156939309787604337

21. Jaeger, R. C., Introduction to Microelectronic Fabrication: Volume 5 of Modular Series on Solid State Devices, 2nd edition, Prentice Hall, 2001.

22. Picoprobe, GGB Industries, , http://www.ggb.com.

23. Cascade Microtech, http://www.cmicro.com, .

24. FEKO, http://www.feko.info, .

25. Fan, W., A. Lu, L. L. Wai, and B. K. Lok, "Mixed-mode S-parameter characterization of differential structures," 5th Electronic Packaging Technology Conference, 2003.