Vol. 38
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-01-09
"Natural" Definition of the Modal Impedances in Non-Homogeneous Dielectric Loaded Rectangular Waveguide
By
Progress In Electromagnetics Research B, Vol. 38, 23-37, 2012
Abstract
In this paper, the definition of the modal impedances of the electromagnetic field in a nonhomogeneously filled waveguide is discussed. The presence of TM modal impedances, which are functions of the transverse coordinate, does not permit us to obtain a unique Z matrix of these guides. Hence, the evaluation of the scattering matrix can be involved. The introduction of a {``natural" EM} expansion overcomes this problem leading to the definition of a unique modal impedance and a unique Z matrix. This approach is applied to the simulation of the effect of a block of dielectric in an empty waveguide by ``cascading" the $S$ matrices of the existing junctions. Finally, this {``natural" EM} expansion is applied to the junction between an empty waveguide and a completely filled waveguide, obtaining an equivalent circuit which better represents the physics of this problem, and to the optical fibers.
Citation
Leonardo Zappelli, ""Natural" Definition of the Modal Impedances in Non-Homogeneous Dielectric Loaded Rectangular Waveguide," Progress In Electromagnetics Research B, Vol. 38, 23-37, 2012.
doi:10.2528/PIERB11112202
References

1. Jöstingmeier, A. and A. S. Omar, "Analysis of inhomogenously filled cavities coupled to waveguides using the VIE formulation," IEEE Trans. on Microwave Theory Tech., Vol. 41, No. 6, 1207-1214, 1993.
doi:10.1109/22.238547

2. Esteban, H., S. Cogollos, V. E. Boria, A. S. Blas, and M. Ferrando, "A new hybrid mode-matching/numerical method for the analysis of arbitrarily shaped inductive obstacles and discontinuities in rectangular waveguides," IEEE Trans. on Microwave Theory Tech., Vol. 50, No. 4, 1219-1224, 2002.
doi:10.1109/22.993428

3. Baillargeat, D., S. Verdeyme, M. Aubourg, and P. Guillon, "CAD applying the finite-element method for dielectric-resonator filters," IEEE Trans. on Microwave Theory Tech., Vol. 46, No. 1, 10-17, 1998.
doi:10.1109/22.654917

4. Macchiarella, G., M. Fumagalli, and S. C. d'Oro, "A new coupling structure for dual mode dielectric resonators," IEEE Microwave Guided Wave Lett., Vol. 10, No. 12, 523-525, 2000.
doi:10.1109/75.895090

5. Weily, A. R and A. S. Mohan, "Microwave filters with improved spurious performance based on sandwiched conductor dielectric resonators," IEEE Trans. on Microwave Theory Tech., Vol. 49, No. 8, 1501-1507, 2001.
doi:10.1109/22.939933

6. Pitarch, J., J. M. Catalá-Civera, F. L. Peñaranda-Foix, and M. A. Solano, "Efficient modal analysis of bianisotropic waveguides by the coupled mode method," IEEE Trans. on Microwave Theory Tech., Vol. 55, No. 1, 108-116, 2007.
doi:10.1109/TMTT.2006.888576

7. Monsoriu, J. A., B. Gimeno, E. Silvestre, and M. V. Andrés, "Analysis of inhomogeneously dielectric filled cavities coupled to dielectric-loaded waveguides: Application to the study of NRD-guide components," IEEE Trans. on Microwave Theory Tech., Vol. 52, No. 7, 1693-1701, 2004.
doi:10.1109/TMTT.2004.830484

8. Akhtar, M. J., L. E. Feher, and M. Thumm, "A closed-form solution for reconstruction of permittivity of dielectric slabs placed at the center of a rectangular waveguide," IEEE Geoscience and Remote Sensing Letters, Vol. 4, No. 1, 122-126, 2007.
doi:10.1109/LGRS.2006.887054

9. Van der Kruk, J., "Properties of surface waveguides derived from inversion of fundamental and higher mode dispersive GPR data," IEEE Trans. on Geoscience and Remote Sensing, Vol. 44, No. 10, 2908-2915, 2006.
doi:10.1109/TGRS.2006.877286

10. Van der Kruk, J., S. A. Arcone, and L. Liu, "Fundamental and higher mode inversion of dispersed GPR waves propagating in an ice layer," IEEE Trans. on Geoscience and Remote Sensing, Vol. 45, No. 8, 2483-2491, 2007.
doi:10.1109/TGRS.2007.900685

11. Moller, D., S. Hensley, G. A. Sadowy, C. D. Fisher, T. Michel, M. Zawadzki, and E. Rignot, "The Glacier and land ice surface topography interferometer: An airborne proof-of-concept demonstration of high-precision ka-band single-pass elevation mapping," IEEE Trans. on Geoscience and Remote Sensing, Vol. 49, No. 2, 827-842, 2011.
doi:10.1109/TGRS.2010.2057254

12. Taherian, M. R., D. J. Yuen, T. M. Habashy, and J. A. Kong, "A coaxial-circular waveguide for dielectric measurement," IEEE Trans. on Geoscience and Remote Sensing, Vol. 29, No. 2, 321-330, 1991.
doi:10.1109/36.73675

13. Fujita, S., M. Shiraishi, and S. Mae, "Measurement on the dielectric properties of acid-doped ice at 9.7 GHz," IEEE Trans. on Geoscience and Remote Sensing, Vol. 30, No. 4, 799-803, 1992.
doi:10.1109/36.158875

14. Chuah, H. T., K. Y. Lee, and T. W. Lau, "Dielectric constants of rubber and oil palm leaf samples at X-band," IEEE Trans. on Geoscience and Remote Sensing, Vol. 33, No. 1, 221-223, 1995.
doi:10.1109/36.368205

15. Frasch, L. L., S. J. McLean, and R. G. Olsen, "Electromagnetic properties of dry and water saturated basalt rock, 1--110 GHz," IEEE Trans. on Geoscience and Remote Sensing, Vol. 36, No. 3, 754-766, 1998.
doi:10.1109/36.673669

16. Vaccaneo, D., L. Sambuelli, P. Marini, R. Tascone, and R. Orta, "Measurement system of complex permittivity of ornamental rocks in L frequency band," IEEE Trans. on Geoscience and Remote Sensing, Vol. 42, No. 11, 2490-2498, 2004.
doi:10.1109/TGRS.2004.835225

17. Williams, D. F. and R. B. Marks, "Reciprocity relations in waveguide junctions," IEEE Trans. Microwave Theory Tech., Vol. 41, No. 6, 1105-1110, 1993.
doi:10.1109/22.238534

18. Collin, R. E., Foundations for Microwave Engineering, 2nd Ed., McGraw-Hill Series in Electrical Engineering, 1992.

19. Marcuvitz, N., Waveguide Handbook, McGraw-Hill, New York, 1951.

20. Williams, D. F. and B. K. Alpert, "Causality and waveguide circuit theory," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 4, 615-623, 2001.
doi:10.1109/22.915434

21. Olyslager, F., D. De Zutter, and A. T. de Hoop, "New reciprocal circuit model for lossy waveguide structures based on the orthogonality of the eigenmodes," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 12, 2261-2269, 1994.
doi:10.1109/22.339751

22. Collin, R. E., Field Theory of Guided Waves, 2nd Ed., IEEE Press, 1991.

23. Kerns, D. M., "Definition of v, i, Z, Y, a, b, Γ, and S," Proceedings of the IEEE, Vol. 55, No. 6, 892-900, 1967.
doi:10.1109/PROC.1967.5704

24. Gerini, G., M. Guglielmi, and G. Lastoria, "Efficient integral equation formulations for admittance or impedance representations of planar waveguide junctions," IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1747-1750, Baltimore, Maryland, 1998.

25. Gerini, G. and L. Zappelli, "Phased arrays of rectangular apertures on conformal cylindrical surfaces: A multimode equivalent network approach," IEEE Trans. on Antennas and Propagation, Vol. 52, No. 7, 1843-1850, 2004.
doi:10.1109/TAP.2004.831311

26. Gerini, G. and L. Zappelli, "Multilayer array antennas with integrated frequency selective surfaces conformal to a circular cylindrical surface," IEEE Trans. on Antennas and Propagation, Vol. 53, No. 6, 2020-2030, 2005.
doi:10.1109/TAP.2005.848459

27. Rozzi, T. E. and W. F. G. Mecklenbrauker, "Wide-band network modeling of interacting inductive irises and steps," IEEE Trans. Microwave Theory Tech., Vol. 23, No. 2, 235-245, 1975.
doi:10.1109/TMTT.1975.1128532

28. Snyder, A. W. and J. D. Love, Optical Waveguide Theory, Chapman and Hall, 1983.

29. McLevige, W. V., T. Itoh, and R. Mittra, "New waveguide structures for millimeter-wave and optical integrated circuits," IEEE Trans. Microwave Theory Tech., Vol. 23, No. 10, 788-794, 1975.
doi:10.1109/TMTT.1975.1128684