Vol. 162
Latest Volume
All Volumes
2018-07-30
A Nanostructure-Based High-Temperature Selective Absorber-Emitter Pair for a Solar Thermophotovoltaic System with Narrowband Thermal Emission
By
Progress In Electromagnetics Research, Vol. 162, 95-108, 2018
Abstract
Using absorber-emitter modules, solar thermophotovoltaic (STPV) systems could potentially break through the Shockley-Queisser limit. Efficient spectral selectivity and high temperature endurance are the keys to this technology. In this paper, a high-efficiency selective absorber-emitter module based on refractory material nanostructures is designed for solar thermophotovoltaic applications. Our numerical simulations show that the proposed absorber-emitter module could provide a specified narrowband emission spectrum above the bandgap with optimal bandwidth, and its performance is robust and independent of incident angle and polarization. According to detailed balance calculations, over a broad range of module temperatures, the solar cell efficiency of our design could suprass the Shockley-Queisser limit by 41%.
Citation
Zhipeng Hu, Yuan Zhang, Liu Liu, Liu Yang, and Sailing He, "A Nanostructure-Based High-Temperature Selective Absorber-Emitter Pair for a Solar Thermophotovoltaic System with Narrowband Thermal Emission," Progress In Electromagnetics Research, Vol. 162, 95-108, 2018.
doi:10.2528/PIER18011002
References

1. Shockley, W. and H. J. Queisser, "Detailed balance limit of efficiency of pn junction solar cells," Journal of Applied Physics, Vol. 32, No. 3, 510-519, 1961.
doi:10.1063/1.1736034

2. De Vos, A. and H. Pauwels, "On the thermodynamic limit of photovoltaic energy conversion," Applied Physics, Vol. 25, No. 2, 119-125, 1981.
doi:10.1007/BF00901283

3. Wiemer, M., V. Sabnis, and H. Yuen, "43.5% efficient lattice matched solar cells," Proc. SPIE, Vol. 8108, No. 810804, 2011.

4. Swanson, R. M., "A proposed thermophotovoltaic solar energy conversion system," Proc. IEEE, Vol. 67, No. 3, 446-447, 1979.
doi:10.1109/PROC.1979.11270

5. Ruppel, W. and P. Wurfel, "Upper limit for the conversion of solar energy," IEEE Trans. Electron. Dev., Vol. 27, No. 4, 877-882, 1980.
doi:10.1109/T-ED.1980.19950

6. Spirkl, W. and H. Ries, "Solar thermophotovoltaics: An assessment," J. Appl. Phys., Vol. 57, No. 9, 4409-4414, 1985.
doi:10.1063/1.334602

7. Landsberg, P. T. and P. Baruch, "The thermodynamics of the conversion of radiation energy for photovoltaics," J. Phys. Math. Gen., Vol. 22, No. 11, 1911-1926, 1989.
doi:10.1088/0305-4470/22/11/028

8. Chaudhuri, T. K., "A solar thermophotovoltaic converter using Pbs photovoltaic cells," Int. J. Energy Res., Vol. 16, No. 6, 481-487, 1992.
doi:10.1002/er.4440160605

9. Stone, K. W., N. S. Fatemi, and L. M. Garverick, "Operation and component testing of a solar thermophotovoltaic power system," Photovoltaic Specialists Conference, 1996, IEEE Conference Record of the Twenty Fifth, 1421-1424, 1996.
doi:10.1109/PVSC.1996.564401

10. Badescu, V., "Thermodynamic theory of thermophotovoltaic solar energy conversion," J. Appl. Phys., Vol. 90, No. 12, 6476-6486, 2001.
doi:10.1063/1.1415756

11. Tobias, I. and A. Luque, "Ideal efficiency and potential of solar thermophotonic converters under optically and thermally concentrated power flux," IEEE Trans. Electron. Dev., Vol. 49, No. 11, 2024-2030, 2002.
doi:10.1109/TED.2002.804731

12. Harder, N. P. and P. Wurfel, "Theoretical limits of thermophotovoltaic solar energy conversion," Semicond. Sci. Technol., Vol. 18, No. 5, S151-S157, 2003.
doi:10.1088/0268-1242/18/5/303

13. Badescu, V., "Upper bounds for solar thermophotovoltaic efficiency," Renew. Energy, Vol. 30, No. 2, 211-225, 2005.
doi:10.1016/j.renene.2004.04.012

14. Andreev, V. M., V. P. Khvostikov, O. A. Khvostikova, A. S. Vlasov, P. Y. Gazaryan, N. A. Sadchikov, and V. D. Rumyantsev, "Solar thermophotovoltaic system with high temperature tungsten emitter," Photovoltaic Specialists Conference, 2005, IEEE Conference Record of the Thirty-first,, 671-674, 2005.
doi:10.1109/PVSC.2005.1488220

15. Vlasov, A. S., V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, "TPV systems with solar powered tungsten emitters," AIP Conf. Proc., Vol. 890, 327-334, 2007.
doi:10.1063/1.2711750

16. Rephaeli, E. and S. Fan, "Tungsten black absorber for solar light with wide angular operation range," Applied Physics Letters, Vol. 92, No. 21, 211107, 2008.
doi:10.1063/1.2936997

17. Rinnerbauer, V., Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, "High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals," Optics Express, Vol. 21, No. 9, 11482, 2013.
doi:10.1364/OE.21.011482

18. Celanovic, I., N. Jovanovic, and J. Kassakian, "Two-dimensional tungsten photonic crystals as selective thermal emitters," Applied Physics Letters, Vol. 92, No. 19, 193101, 2008.
doi:10.1063/1.2927484

19. Yeng, Y. X., M. Ghebrebrhan, P. Bermel, and W. R. Chan, "Enabling high-temperature nanophotonics for energy applications," Proceedings of the National Academy of Sciences, Vol. 109, No. 7, 2280-2285, 2012.
doi:10.1073/pnas.1120149109

20. Nam, Y., Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljacic, and E. N. Wang, "Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters," Solar Energy Materials and Solar Cells, Vol. 122, 287-296, 2014.
doi:10.1016/j.solmat.2013.12.012

21. Rephaeli, E. and S. Fan, "Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit," Optics Express, Vol. 17, No. 17, 15145-15149, 2009.
doi:10.1364/OE.17.015145

22. Sergeant, N. P., M. Agrawal, and P. Peumans, "High performance solar-selective absorbers using coated sub-wavelength gratings," Optics Express, Vol. 18, No. 6, 5525-5540, 2010.
doi:10.1364/OE.18.005525

23. Lenert, A., D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovi´c, M. Soljacic, and E. N. Wang, "A nanophotonic solar thermophotovoltaic device," Nature Nanotechnology, Vol. 9, No. 2, 126-130, 2014.
doi:10.1038/nnano.2013.286

24. Chou, J. B., Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljacic, E. N. Wang, and S. G. Kim, "Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications," Optics Express, Vol. 22, No. 101, A144-A154, 2014.
doi:10.1364/OE.22.00A144

25. Mo, L., L. Yang, E. H. Lee, and S. He, "High-efficiency plasmonic metamaterial selective emitter based on an optimized spherical core-shell nanostructure for planar solar thermophotovoltaics," Plasmonics, Vol. 10, No. 3, 529-538, 2015.
doi:10.1007/s11468-014-9837-6

26. Shackelford, J. F., Y. H. Han, S. Kim, and S. H. Kwon, CRC Materials Science and Engineering Handbook, CRC Press, Florida, 2015.

27. Touloukian, Y. S. and D. P. DeWitt, Thermophysical Properties of Matter, The TPRC Data Series, IFI/Plenum, New York-Washington, 1970.

28. Roberts, S., "Optical properties of nickel and tungsten and their interpretation according to Drude’s formula," Physical Review, Vol. 114, No. 1, 104, 1959.
doi:10.1103/PhysRev.114.104