Vol. 144
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-12-11
Range-Spread Target Detection in Compound Gaussian Clutter with Reciprocal of the Square Root of Gamma Texture
By
Progress In Electromagnetics Research, Vol. 144, 11-21, 2014
Abstract
In this paper, the range-spread target detection in compound Gaussian clutter with reciprocal of the square root of gamma (RSRG) texture is investigated. The RSRG distribution has been proved to be a good model for texture component of extremely heterogeneous radar clutter. Taking this compound Gaussian model as a spherically invariant random process (SIRP), the Neyman-Pearson optimal detector for the range-spread target detection with known target amplitude is derived firstly. By replacing the ideal target amplitude with its maximum likelihood estimate (MLE), the generalized likelihood ratio test (GLRT) is then obtained. The statistical property of the texture component is taken into account in both of these two detectors, which makes the detectors computationally complicated. A suboptimal generalized likelihood ratio test based on order statistics (OS-GLRT) is finally proposed by substituting the texture component with its MLE. The OS-GLRT makes use of some largest observations from the range cells occupied by the most likely target scatters. The performance assessment conducted by Monte Carlo simulation validates the effectiveness of the proposed detectors.
Citation
Yanzhao Gao, Ronghui Zhan, and Jianwei Wan, "Range-Spread Target Detection in Compound Gaussian Clutter with Reciprocal of the Square Root of Gamma Texture," Progress In Electromagnetics Research, Vol. 144, 11-21, 2014.
doi:10.2528/PIER13101005
References

1. Kelly, E. J., "An adaptive detection algorithm," IEEE Transactions on Aerospace and Electronic Systems, Vol. 22, No. 1, 115-127, 1986.
doi:10.1109/TAES.1986.310745

2. Robey, F. C., et al. "IEEE Transactions on Aerospace," IEEE Transactions on Aerospace and Electronic Systems, Vol. 28, No. 1, 208-216, 1992.
doi:10.1109/7.135446

3. Hansen, V. G., "Constant false alarm rate processing in search radars," Proceedings of the IEEE 1973 International Radar Conference, 325-332, 1973.

4. Zhou, W., J. T. Wang, H. W. Chen, and X. Li, "Signal model and moving target detection based on MIMO synthetic aperture radar," Progress In Electromagnetics Research, Vol. 131, 311-329, 2012.

5. Hao, C., F. Bandiera, J. Yang, D. Orlando, S. Yan, and C. Hou, "Adaptive detection of multiple point-like targets under conic constraints," Progress In Electromagnetics Research, Vol. 129, No. 250, 231, 2012.

6. Hatam, M., A. Sheikhi, and M. A. Masnadi-Shirazi, "Target detection in pulse-train MIMO radars applying ICA algorithms," Progress In Electromagnetics Research, Vol. 122, 413-435, 2012.
doi:10.2528/PIER11101206

7. Tian, B., D. Y. Zhu, and Z. D. Zhu, "A novel moving target detection approach for dual-channel SAR system," Progress In Electromagnetics Research, Vol. 115, 191-206, 2011.

8. Gao, F., A. Ru, J. Sun, and A. Hussain, "A novel SAR target detection algorithm based on contextual knowledge," Progress In Electromagnetics Research,", Vol. 142, 123 -140, 2013.

9. Mohammadpoor, M., R. S. A. Raja Abdullah, A. Ismail, and A. F. Abas, "A circular synthetic aperture radar for on-the-ground object detection," Progress In Electromagnetics Research, Vol. 122, 269-292, 2012.
doi:10.2528/PIER11082201

10. Wehner, D. R., High-resolution Radar, Artech House, Norwood, MA, 1995.

11. Hughes, P. K., "A high-resolution radar detection strategy," IEEE Transactions on Aerospace and Electronic Systems, Vol. 19, No. 5, 663-667, 1983.
doi:10.1109/TAES.1983.309368

12. Van Trees, H. L., "Detection Estimation and Modulation Theory," Wiley, 1971.

13. Gerlach, K., M. Steiner, and F. C. Lin, "Detection of a spatially distributed target in white noise," IEEE Signal Processing Letters, Vol. 4, No. 7, 198-200, 1997.
doi:10.1109/97.596885

14. Maio, A. D., A. Farina, and K. Gerlach, "Adaptive detection of range spread targets with orthogonal rejection," IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, No. 2, 738-752, 2007.
doi:10.1109/TAES.2007.4285365

15. Gerlach, K. and M. J. Steiner, "Adaptive detection of range distributed targets," IEEE Transactions on Signal Processing, Vol. 47, No. 7, 1844-1851, 1999.
doi:10.1109/78.771034

16. Gerlach, K., "Spatially distributed target detection in non-Gaussian clutter ," IEEE Transactions on Aerospace and Electronic Systems, Vol. 35, No. 3, 926-934, 1999.
doi:10.1109/7.784062

17. He, Y., T. Jian, et al. "Novel range-spread target detectors in non-Gaussian clutter," IEEE Transactions on Aerospace and Electronic Systems, Vol. 46, No. 3, 1312-1328, 2010.
doi:10.1109/TAES.2010.5545191

18. Jian, T., Y. He, F. Su, et al. "Cascaded detector for range-spread target in non-Gaussian clutter," IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, No. 2, 1713-1725, 2012.
doi:10.1109/TAES.2012.6178091

19. Weinberg, G. V., "Coherent multi-look radar detection for targets in Pareto distributed clutter," Defence Science and Technology Organization, 2012.

20. Weinberg, G. V., "Coherent CFAR detection in compound Gaussian clutter with inverse gamma texture," EURASIP Journal on Advances in Signal Processing, Vol. 2013, 105, 2013.
doi:10.1186/1687-6180-2013-105

21. Weinberg, G. V., "Coherent multi-look radar detection for targets in KK-distributed clutter,"," Digital Communication, 2012.

22. Weinberg, G. V., "Suboptimal coherent radar detection in a KK-distributed clutter environment," International Scholarly Research Network Signal Processing, 2012.

23. Balleri, A., A. Nehorai, and J. Wang, "Maximum likelihood estimation for compound-Gaussian clutter with inverse-gamma texture," IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, No. 2, 775-780, 2007.
doi:10.1109/TAES.2007.4285370

24. Weinberg, G. V., "Assessing the Pareto fit to high resolution high grazing angle sea clutter ," Electronics Letters, Vol. 47, No. 8, 516-517, 2011.
doi:10.1049/el.2011.0518

25. Frery, A. C., H. J. Muller, C. F. Yanasse, et al. "A model for extremely heterogeneous clutter," IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, No. 3, 648-659, 1997.
doi:10.1109/36.581981

26. Moser, G., J. Zerubia, and S. B. Serpico, "Dictionary-based stochastic expectation-maximization for SAR amplitude probability density function estimation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 1, 188-200, 2006.
doi:10.1109/TGRS.2005.859349

27. Moser, G., J. Zerubia, and S. B. Serpico, "SAR amplitude probability density function estimation based on a generalized Gaussian model," IEEE Transactions on Image Processing, Vol. 15, No. 6, 1429-1442, 2006.
doi:10.1109/TIP.2006.871124

28. Xu, Z., "Modeling of sea clutter and target detection in sea clutter," Graduate School of National University of Defense Technology, 2012.

29. Nitzberg, R., "Effect of a few dominant specular reflectors target model upon target detection ," IEEE Transactions on Aerospace and Electronic Systems, Vol. 14, No. 4, 670-673, 1978.
doi:10.1109/TAES.1978.308696

30. Gini, F. and M. Greco, "Covariance matrix estimation for CFAR detection in correlated heavy tailed clutter," Signal Processing, Vol. 82, 1495-1507, 2002.