Vol. 46
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-11-13
Hybrid Multi-Phased Particle Swarm Optimization for through -Wall Shape Reconstruction and Wall Parameters Estimation
By
Progress In Electromagnetics Research B, Vol. 46, 23-40, 2013
Abstract
When particle swarm optimization(PSO) technique is used for the inverse scattering problems, it will take unbearably long time for the final solution, especially when the PSO algorithm traps into the premature convergence. To overcome this problem, a hybrid multi-phased particle swarm optimization algorithm (HMPPSO) is proposed. By adopting the small swarm size strategy and the idea of ``sub swarms'' working cooperatively and alternatively with ``optimal swarm'' into the MPPSO, the HMPPSO can converge quickly with much less fitness function evaluation times, thus will reduce the reconstruction time. After the HMPPSO is validated by the numerical simulations on benchmark functions, the wall parameters (permittivity, conductivity, and thickness) together with target shape parameters (approximated by the trigonometric serials) with 20 dB additive Gaussian white noise are successfully reconstructed by HMPPSO using multi-frequency, multi-view/single-illumination scattering fields calculated by MOM.
Citation
Ji-Liang Cai, Chuang-Ming Tong, and Wei-Jie Ji, "Hybrid Multi-Phased Particle Swarm Optimization for through -Wall Shape Reconstruction and Wall Parameters Estimation," Progress In Electromagnetics Research B, Vol. 46, 23-40, 2013.
doi:10.2528/PIERB12091004
References

1. Qing, A. and L. Jen, "A novel method for microwave imaging of dielectric cylinder in layered media," Journal of Electromagnetic Waves and Applications, Vol. 11, No. 10, 1337-1348, 1997.
doi:10.1163/156939397X00026

2. Huang, Q., L. L. Qu, B. H. Wu, and G. Y. Fang, "UWB through-wall imaging based on compressive sensing," IEEE Trans. on Geosci. Remote Sens., Vol. 48, No. 3, 1408-1415, 2010.
doi:10.1109/TGRS.2009.2030321

3. Caorsi, S., A. Massa, and M. Pastrorino, "Iterative numerical computation of the electromagnetic fields inside weakly nonlinear infinite dielectric cylinders of arbitrary cross section using distorted-wave born approximation," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 3, 400-412, 1996.
doi:10.1109/22.486149

4. Abubakar, A. and P. M. van den Berg, "The contrast source inversion method for location and shape reconstructions," Inverse Problems, Vol. 18, 495-510, 2002.
doi:10.1088/0266-5611/18/2/313

5. Chen, X. D., "Subspace-based optimization method for solving inverse-scattering problems," IEEE Trans. on Geosci. Remote Sens., Vol. 48, No. 3, 42-49, 2010.
doi:10.1109/TGRS.2009.2025122

6. Kirsch, A., "The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media," Inverse Problems, Vol. 18, 1025-1040, 2002.
doi:10.1088/0266-5611/18/4/306

7. Kidera, S., T. Sakamoto, and T. Sato, "High-resolution 3-D imaging algorithm with an envelope of modified spheres for UWB through-the-wall radars," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 11, 3520-3529, Nov. 2009.
doi:10.1109/TAP.2009.2032337

8. Van den Berg, P. M. and M. van der Horst, "Nonlinear inversion in induction logging using the modified gradient method," Radio Sci., Vol. 30, 1355-1369, 1995.
doi:10.1029/95RS01764

9. Hettlich, F., "Two methods for solving an inverse conductive scattering problem," Inverse Problems, Vol. 10, 375-385, 1994.
doi:10.1088/0266-5611/10/2/012

10. Rekanos, I. T., "Shape reconstruction of a perfectly conducting scatter using di®erential evolution and particle swarm optimization," IEEE Trans. on Geosci. Remote Sens., Vol. 46, No. 7, 1967-1974, 2008.
doi:10.1109/TGRS.2008.916635

11. Qing, A., C. K. Lee, and L. Jen, "Electromagnetic inverse scattering of two-dimensional perfectly conducting objects by real-coded genetic algorithm," IEEE Trans. on Geosci. Remote Sens., Vol. 39, No. 3, 665-676, 2001.
doi:10.1109/36.911123

12. Dehmollaian, M., "Through-wall shape reconstruction and wall parameters estimation using differential evolution," IEEE Geosciences and Remote Sensing Letters, Vol. 8, No. 2, 201-205, 2011.
doi:10.1109/LGRS.2010.2056912

13. Brignone, M., G. Bozza, A. Randazzo, M. Piana, M. Pastorino "A hybrid approach to 3D microwave imaging by using linear sampling and ACO," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 10, 3224-3232, 2008.
doi:10.1109/TAP.2008.929504

14. Kennedy, J. and R. C. Eberhart, Swarm Intelligence, Morgan Kaufmann, San Francisco, 2001.

15. Huang, T. and A. Sanagavarapu, "A microparticle swarm optimizer for the reconstruction of microwave images," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 568-576, 2007.
doi:10.1109/TAP.2007.891545

16. Mhamdi, B., K. Grayaa, and T. Aguili, "Hybrid of particle swarm optimization, simulated annealing and tabu search for the reconstruction of two-dimensional targets from laboratory-controlled data," Progress In Electromagnetics Research B, Vol. 28, 1-18, 2011.

17. Huang, C.-H., C.-C. Chiu, C.-L. Li, K.-C. Chen "Time domain inverse scattering of a two-dimensional homogenous dielectric object with arbitrary shape by particle swarm optimization," Progress In Electromagnetics Research, Vol. 82, 381-400, 2008.

18. Donelli, M. and A. Massa, "Computational approach based on a particle swarm optimization for microwave imaging of two dimensional dielectric scatters," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 5, 1761-1776, 2005.
doi:10.1109/TMTT.2005.847068

19. Donelli, M., D. Franceschini, P. Rocca, and A. Massa, "Three dimensional microwave imaging problems solved through an e±cient multiscaling particle swarm optimization," IEEE Trans. on Geosci. Remote Sens., Vol. 47, No. 5, 1467-1481, 2009.
doi:10.1109/TGRS.2008.2005529

20. Emad Eldin, A. M., E. A. H. Hashish, and M. I. Hassan, "Inversion of lossy dielectric profiles using particle swarm optimization," Progress In Electromagnetics Research M, Vol. 9, 93-105, 2009.
doi:10.2528/PIERM09072604

21. Al-kazemi, B. S. N., "Multi-phase particle swarm optimization,", Syracuse University, May 2002.

22. Al-Kazemi, B. and C. K. Mohan, "Muti-phase discrete particle swarm optimization," Proc. the Fourth International Workshop on Frontiers in Evolutionary Algorithms, 2000.

23. Jie, J., J. C. Zeng, and C. Z. Han, "Knowledge based cooperative particle swarm optimization," Applied Mathematics and Computation, Vol. 205, No. 2, 861-873, 2008.
doi:10.1016/j.amc.2008.05.100