Vol. 53
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-08-01
High-Speed, Simplified Design of an Image Receiver for Wireless Capsule Endoscopy
By
Progress In Electromagnetics Research B, Vol. 53, 223-239, 2013
Abstract
Just over a decade ago, wireless capsule endoscopy (WCE) was introduced as a novel alternative to conventional wire or probe endoscopy to examine disorders of the human gastrointestinal (GI) tract. Yet, the persistent inability of transmitting high-quality images due to limited data rate of the telemetry system continues to be an issue of major concern. Thus, high-data-rate telemetry systems are essential due to the widespread use of the WCE technique. In this paper, we present such a telemetry system that includes a highly-simplified receiver for the use in WCE. Unlike the conventional architecture of a radio frequency (RF) receiver, the architecture of the new receiver allows the direct conversion of analog RF signals to digital signals, eliminating the need for any frequency conversion in the analogue domain. Our receiver system consists of sub-blocks, a low-noise amplifier (LNA), a logarithmic amplifier (LA), a power detector (PD), and a comparator. The common-source cascode LNA was designed with its frequency spectrum centralized at 450 MHz, which was determined by electromagnetic (EM) simulation of the path loss in the GI tract of the human body. To ensure that the higher data rate, i.e., 100 Mbps, could be attained, the LNA was designed for a system bandwidth of 100 MHz, i.e., 400-500 MHz. The LNA and the three cascading blocks in combination have total gain of 80 dB to compensate for the losses in the weak signals that are received. The LNA and the LA, including the PD and the comparator, require 17-mA and 337-μA currents, respectively, from a 1.5-V, DC source.
Citation
Md. Rubel Basar, Mohd Fareq Bin Abd Malek, Khairudi Mohd Juni, Mohd Shaharom Idris, and Mohd Iskandar Mohd Saleh, "High-Speed, Simplified Design of an Image Receiver for Wireless Capsule Endoscopy," Progress In Electromagnetics Research B, Vol. 53, 223-239, 2013.
doi:10.2528/PIERB13052012
References

1. Iddan, G., G. Moron, A. Glukhovsky, and P. Swain, "Wireless capsule endoscopy," Nature, Vol. 405, 417, May 2000.
doi:10.1038/35013140

2. Basar, M. R., F. Malek, K. M. Juni, M. S. Idris, and M. I. M. Saleh, "Ingestible wireless capsule technology: A review of development and future indication," International Journal of Antenna and Propagation, Vol. 2012, 1-14, 2012.
doi:10.1155/2012/807165

3. Pan, G. and L. Wang, "Swallowable wireless capsule endoscopy: Progress and technical challenges," Gastroenterology Research and Practice, Vol. 2012, 1-9, 2011.
doi:10.1155/2012/841691

4. Ciuti, G., A. Menciassi, and P. Dario, "Capsule endoscopy: From current achievements to open challenges," IEEE Reviews in Biomedical Engineering, Vol. 4, 59-72, 2011.
doi:10.1109/RBME.2011.2171182

5. Chi, B., J. Yao, S. Han, X. Xie, G. Li, and Z. Wang, "Low power high data rate wireless endoscopy transceiver," Microelectronics Journal, Vol. 38, 1070-1081, 2007.
doi:10.1016/j.mejo.2007.07.118

6. Thoné, J., S. Radiom, D. Turgis, R. Carta, G. Gielen, and R. Puers, "Design of a 2 Mbps FSK near-field transmitter for wireless capsule endoscopy," Sensors and Actuators A: Physical, Vol. 156, 43-48, 2009.
doi:10.1016/j.sna.2008.11.027

7. Diao, S., Y. Zheng, and C. Heng, "A CMOS ultra low-power and highly e±cient UWB-IR transmitter for WPAN applications," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 56, 200-204, 2009.
doi:10.1109/TCSII.2009.2015369

8. Gao, Y., Y. Zheng, S. Diao, W. Toh, C. Ang, M. Je, and C. Heng, "Low-power ultrawideband wireless telemetry transceiver for medical sensor applications," IEEE Transactions on Biomedical Engineering, Vol. 58, 768-772, 2011.
doi:10.1109/TBME.2011.2164248

9. Wong, S.-K., F. Kung, S. Maisurah, and M. N. B. Osman, "A WiMedia compliant CMOS RF power amplifier for ultra-wideband (UWB) transmitter," Progress In Electromagnetics Research, Vol. 112, 329-347, 2011.

10. Basar, M. R., F. Malek, K. M. Juni, M. I. M. Saleh, M. S. Idris, L. Mohamed, N. Saudin, N. A. Mohd Affendi, and A. Ali, "The use of a human body model to determine the variation of path losses in the human body channel in wireless capsule endoscopy," Progress In Electromagnetics Research, Vol. 133, 495-513, 2013.

11. Theilmann, P., M. A. Tassoudji, E. H. Teague, D. F. Kimball, and P. M. Asbeck, "Computationally efficient model for UWB signal attenuation due to propagation in tissue for biomedical implants," Progress In Electromagnetics Research B, Vol. 38, 1-22, 2012.

12. Kim, K., S. Yun, S. Lee, S. Nam, Y. Yoon, and C. Cheon, "A design of a high-speed and high-e±ciency capsule endoscopy system," IEEE Transactions on Biomedical Engineering, Vol. 59, 1005-1011, Apr. 2012.
doi:10.1109/TBME.2011.2182050

13. Woo, S. H., K. W. Yoon, Y. K. Moon, J. H. Lee, H. J. Park, T. W. Kim, et al. "High speed receiver for capsule endoscope," Journal of Medical Systems, Vol. 34, 843-847, 2010.
doi:10.1007/s10916-009-9298-1

14. Basar, M. R., M. F. B. A. Malek, M. I. M. Saleh, M. S. Idris, K. M. Juni, A. Ali, N. A. Mohd Affendi, and N. Hussin, "A novel, high-speed image transmitter for wireless capsule endoscopy," Progress In Electromagnetics Research, Vol. 137, 129-147, 2013.

15. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Physics in Medicine and Biology, Vol. 41, 2231-2249, 1996.
doi:10.1088/0031-9155/41/11/001

16. Chen, Z. and Y. P. Zhang, "Effects of antennas and propagation channels on synchronization performance of a pulse-based ultra-wideband radio system," Progress In Electromagnetics Research, Vol. 115, 95-112, 2011.

17. Gjonaj, E., M. Bartsch, M. Clemens, S. Schupp, and T. Weiland, "High-resolution human anatomy models for advanced electromagnetic field computations," IEEE Transactions on Magnetics, Vol. 38, No. 2, 357-360, Mar. 2002.
doi:10.1109/20.996096

18. Carlson, B., B. C. Paul, and C. R. Janet, Communication Systems --- An Introduction to Signals and Noise in Electrical Communications, 4th Ed., McGraw-Hill, 2001.

19. Carmo, J. P. and J. H. Correia, "RF CMOS transceiver at 2.4 GHz in wearables for measuring the cardio-respiratory function," Measurement, Vol. 44, 65-73, 2011.
doi:10.1016/j.measurement.2010.09.027

20. Ellinger, F., Radio Frequency Integrated Circuits and Technologies, Springer-Verlag, Berlin, Heidelberg, 2007.

21. Shaeffer, D. and T. Lee, "A 1.5 V, 1.5 GHz CMOS low-noise amplifier," IEEE Journal of Solid-State Circuits, Vol. 39, 569-576, 2004.

22. Doh, H., Y. Jeong, S. Jung, and Y. Joo, "Design of CMOS UWB low noise amplifier with cascade feedback," The 7th IEEE International Midwest Symposium on Circuits and Systems, 641-644, 2004.

23. Rubin, S. N., "A wideband UHF logarithmic amplifier," IEEE Journal of Solid-State Circuits, Vol. 2, 74-81, 1966.
doi:10.1109/JSSC.1966.1049762

24. Barber, W. L. and E. R. Brown, "A true logarithmic amplifier for radar IF applications," IEEE Journal of Solid-State Circuits, Vol. 15, 291-295, 1980.
doi:10.1109/JSSC.1980.1051386