Vol. 61
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-09-04
CPML and Quasi-CPML for Cylindrical MRTD Method
By
Progress In Electromagnetics Research B, Vol. 61, 17-30, 2014
Abstract
Two absorbing boundary conditions (ABC's) are derived for the cylindrical MRTD grids. The first one is the convolutional perfectly matched layer (CPML) based on stretched coordinates with complex frequency shifted constitutive parameters, and the other is the straightforward extension of CPML named quasi-CPML (QCPML) as it is no longer perfectly matched for cylindrical interfaces. Unlike the Berenger's PML, the implementations of the two ABC's are completely independent of the host material. Numerical results show that both ABC's can provide a quite satisfactory absorbing boundary condition, and can save more CPU time and memory than the Berenger's PML, while the QCPML has an advantage of CPML at the proposed absorbing performance, CPU time and memory saving. Moreover, it is shown that the QCPML is more effective than the PML and CPML at absorbing evanescent waves.
Citation
Pin Zhang, Yawen Liu, Shi Qiu, and Bo Yang, "CPML and Quasi-CPML for Cylindrical MRTD Method," Progress In Electromagnetics Research B, Vol. 61, 17-30, 2014.
doi:10.2528/PIERB14071002
References

1. Krumpholz, M. and L. P. B. Katehi, "New prospects for time domain analysis," IEEE Microwave Guided Wave Lett., Vol. 5, No. 11, 382-384, December 1995.
doi:10.1109/75.473535

2. Krumpholz, M. and L. P. B. Katehi, "MRTD: New time-domain schemes based on multiresolution analysis," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 4, 555-561, April 1996.
doi:10.1109/22.491023

3. Pan, G., M. V. Toupikov, and B. K. Gilbert, "On the use of Coifman intervallic wavelets in the method of moments for fast construction of wavelets sparsified matrices," IEEE Trans. Antennas Propagat., Vol. 47, No. 7, 1189-1200, July 1999.

4. Cheong, Y. W., Y. M. Lee, K. H. Ra, J. G. Kang, and C. C. Shin, "Wavelet-Galerkin scheme of time-dependent inhomogeneous electromagnetic problems," IEEE Microwave Guided Wave Lett., Vol. 9, No. 8, 297-299, August 1999.
doi:10.1109/75.779907

5. Grivet-Talocia, S., "On the accuracy of Haar-based multiresolution time-domain schemes," IEEE Microwave Wave Lett., Vol. 10, No. 10, 397-399, October 2000.
doi:10.1109/75.877224

6. Dogaru, T. and L. Carin, "Multiresolution time-domain using CDF biorthogonal wavelets," IEEE Trans. Antennas Propagat., Vol. 49, No. 5, 902-912, May 2001.

7. Fujii, M. and W J. R. Hoefer, "Dispersion of time domain wavelet Galerkin method based on Daubechies’ compactly supported scaling functions with three and four vanishing moments," IEEE Microwave Guided Wave Lett., Vol. 10, No. 4, 125-127, April 2000.
doi:10.1109/75.846920

8. Kong, L.-Y., J. Wang, and W.-Y. Yin, "A novel dielectric conformal FDTD method for computing SAR distribution of the human body in a metallic cabin illuminated by an intentional electromagnetic pulse (IEMP)," Progress In Electromagnetics Research, Vol. 126, 355-373, 2012.
doi:10.2528/PIER11112702

9. Mao, Y., B. Chen, H.-Q. Liu, J.-L. Xia, and J.-Z. Tang, "A hybrid implicit-explicit spectral FDTD scheme for oblique incidence problems on periodic structures," Progress In Electromagnetics Research, Vol. 128, 153-170, 2012.
doi:10.2528/PIER12032306

10. Wang, J.-B., B.-H. Zhou, L.-H. Shi, C. Gao, and B. Chen, "A novel 3-D weakly conditionally stable FDTD algorithm," Progress In Electromagnetics Research, Vol. 130, 525-540, 2012.
doi:10.2528/PIER12071904

11. Xiong, R., B. Chen, Y. Mao, B. Li, and Q.-F. Jing, "A simple local approximation FDTD model of short apertures with a finite thickness," Progress In Electromagnetics Research, Vol. 131, 135-152, 2012.
doi:10.2528/PIER12072201

12. Xiong, R., B. Chen, J.-J. Han, Y.-Y. Qiu, W. Yang, and Q. Ning, "Transient resistance analysis of large grounding systems using the FDTD method," Progress In Electromagnetics Research, Vol. 132, 159-175, 2012.
doi:10.2528/PIER12082601

13. Gradoni, G., V. Mariani Primiani, and F. Moglie, "Reverberation chamber as a multivariate process: FDTD evaluation of correlation matrix and independent positions," Progress In Electromagnetics Research, Vol. 133, 217-234, 2013.
doi:10.2528/PIER12091807

14. Kong, Y.-D., Q.-X. Chu, and R.-L. Li, "High-order unconditionally-stable four-step adi-FDTD methods and numerical analysis," Progress In Electromagnetics Research, Vol. 135, 713-734, 2013.
doi:10.2528/PIER12102205

15. Chun, K., H. Kim, H. Kim, and Y. Chung, "PLRC and ADE implementations of Drude-critical point dispersive model for the FDTD method," Progress In Electromagnetics Research, Vol. 135, 373-390, 2013.
doi:10.2528/PIER12112207

16. Liu, Y., Y. Chen, B. Chen, and X. Xu, "A cylindrical MRTD algorithm with PML and quasi-PML," IEEE Trans. Microwave Theory Tech., Vol. 61, No. 3, 1006-1017, March 2013.
doi:10.1109/TMTT.2013.2243745

17. Roden, J. A. and S. D. Gedney, "Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microwave Opt. Technol. Lett., Vol. 27, No. 5, 334-339, December 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A

18. Abarbanel, S., D. Gottlieb, and J. S. Hesthaven, "Long time behavior of the perfectly matched layer equations in computational electromagnetics," Journal of Scientific Computing, Vol. 17, No. 1-4, 405-422, 2002.
doi:10.1023/A:1015141823608

19. Sweldens, W. and R. Piessens, "Wavelet sampling techniques," Proc. Statistical Computing Section, 20-29, 1993.

20. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 114, No. 2, 195-200, 1994.
doi:10.1006/jcph.1994.1159

21. Teixeira, F. L. and W. C. Chew, "PML-FDTD in cylindrical and spherical grids," IEEE Microwave Guided Wave Lett., Vol. 7, No. 9, 285-287, September 1997.
doi:10.1109/75.622542

22. Chew, W. C. and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates," Microwave Opt. Technol. Lett., Vol. 7, No. 7, 599-604, September 1994.
doi:10.1002/mop.4650071304

23. Gedney, S. D. and The perfectly matched layer absorbing medium, Advances in Computational Electrodynamics: The Finite Difference Time Domain, A. Taflove (ed.), 263-340, Artech House, Boston, MA, 1998.