Vol. 4
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2008-08-06
Influence of Time and Temperature on Resistivity and Microstructure of CuX Co1-X FE2 O4 Mixed Ferrites
By
Progress In Electromagnetics Research Letters, Vol. 4, 121-129, 2008
Abstract
Copper-cobalt ferrites with general chemical formula CuxCo1-xFe2O4 (with x = 0.0, 0.4, 0.6 & 1.0) were prepared by ceramic method. The solid state reaction was confirmed by XRD patterns. DC conductivity was measured by two probe method. Electrical resistivity is found to increase on lowering of sintering temperature and time. At x = 1.0, the conduction is mainly due to hopping of electrons leading to n-type conductivity while at x = 0.0, conduction is due to holes leading to P-type conductivity. The lowest conduction at x = 0.4 is attributed to the electron hole compensation. SEM micrographs were obtained from JEOL scanning electron microscope. The micrographs reveal that an average grain size increases with sintering temperature and time as a result of decrease in porosity. This leads to the decrease in resistivity with sintering temperature and time. One of the factors for higher conductivity in ferrites is an increase in average grain size and decrease in pore concentration during the heat treatment.
Citation
Bantesh Bammannavar, Lalasing Naik, Rangappa Pujar, and Baburao Chougule, "Influence of Time and Temperature on Resistivity and Microstructure of CuX Co1-X FE2 O4 Mixed Ferrites," Progress In Electromagnetics Research Letters, Vol. 4, 121-129, 2008.
doi:10.2528/PIERL08061101
References

1. Koledintseva, M. Y. and A. A. Kitaitsev, "Analysis of interaction between crystelographically uniaxial ferrite resonators and a Hall-effect transducer," Progress In Electromagnetics Research, Vol. 74, 1-19, 2007.
doi:10.2528/PIER07032703

2. Lagarkov, A. L., V. N. Kisel, and U. N. semenenko, "Wideangle absorption by use of a metamaterial plate," Progress In Electromagnetics Research Letters, Vol. 1, 35-44, 2008.
doi:10.2528/PIERL07111809

3. Kumar, A. and S. Sharma, "Measurement of dielectric constant and loss factoe of the dielectric material at microwave frequencies," Progress In Electromagnetics Research, Vol. 69, 47-54, 2007.
doi:10.2528/PIER06111204

4. Kkalaj-Amirhosseini, M., "Microwave filters using waveguides filled by multilayer dielectric," Progress In Electromagnetics Research, Vol. 66, 105-110, 2006.
doi:10.2528/PIER06102502

5. Soliman, E. A. and G. A. E. Vandenbosch, "Greens functions of filament sources embedded in stratified dielectric media," Progress In Electromagnetics Research, Vol. 62, 21-40, 2006.
doi:10.2528/PIER06022401

6. Nikellis, K., N. Uzunoglu, Y Koutsoyannopoulos, and S. Bantas, "Full-wave modeling of stripline structures in multilayer dielctrics," Progress In Electromagnetics Research, Vol. 57, 253-264, 2006.
doi:10.2528/PIER05071302

7. Saed, M. and R. Y. Yadla, "Microstrip-fed low profile and compact dielectric resonator antennas," Progress In Electromagnetics Research, Vol. 56, 151-162, 2006.
doi:10.2528/PIER05041401

8. Fu, Y. P., K. Y. Pan, and C. H. Lin, "Ni-Cu-Zn ferrite powder from steel pickled liquor and electroplating waste solutions," Mater. Lett., Vol. 57, 291-296, 2002.
doi:10.1016/S0167-577X(02)00780-2

9. Singhal, S., J. Singh, S. K. Barthwal, and K. Chandra, "Preparation and characterization of nanosized nickelsubstituted cobalt ferrite," J. Solid. State. Chem., Vol. 178, 3183-3189, 2005.
doi:10.1016/j.jssc.2005.07.020

10. Afrang, S. and B. Y. Majlis, "Small size KA-band distributed MEMS phase shifters using inductors," Progress In Electromagnetics Research B, Vol. 1, 95-113, 2008.
doi:10.2528/PIERB07101903

11. Wongkasem, N. and A. Akyurtlu, "Noel broadband tetrahertz negative refractive index metamaterials: Analysis and experiment," Progress In Electromagnetics Research, Vol. 64, 205-218, 2006.
doi:10.2528/PIER06071104

12. Wongkasem, N., A. Akyurtlu, and K. A. Marx, "Group theory based design of isotropic negative refractive index metamaterials," Progress In Electromagnetics Research, Vol. 63, 295-310, 2006.
doi:10.2528/PIER06062103

13. Rahman, I. Z. and T. T. Ahmed, "A study on copper substituted chemically processed Ni-Zn-Cu ferrites," J. Magn. Magn. Mater., Vol. 290, 290-291, 2005.
doi:10.1016/j.jmmm.2004.11.211

14. Tosyulu, O. S., J. Gowri Krishna, and J. Sobhanandri, "A method for the evaluation of dielectric parameters of solids at microwave frequencies," J. Phys. E: Scientific Instruments, Vol. 59, 323-327, 1982.

15. He, X., Z. Tang, B. Zhang, and Y. Wu, "A new deem bedding method in permittivity measurement of ferroelectric thin film material," Progress In Electromagnetics Research Letters, Vol. 3, 1-8, 2008.
doi:10.2528/PIERL08011501

16. Chinnasamy, C. N., A. Narayanasamy, N. Ponpandian, K. CattopadhyayH. Gueralt, and J. M. Greneche, "Magnetic properties of nanostructured ferromagnetic zinc ferrites," J. Phys. Condens. Matter., Vol. 12, 7795-7799, 2000.
doi:10.1088/0953-8984/12/35/314

17. Nathani, H., S. Gubbala, and R. D. K. Misra, "Magnetic behaviour of nanocrystalline nickel ferrite part I: The effect of surface roughness," Mater. Sci. Engg., Vol. 121(B), 291-296, 2005.

18. Sivakumar, N., A. Narayanasamy, and N. Ponpandian, "Grain size effect on the dielectric behavior of nanostructured Ni0.5Zn0.5Fe2O4," J. Apply. Phy., Vol. 101, 084116-0841122, 2007.
doi:10.1063/1.2721379

19. Von Aulock, W. H., Hand Book of Microwave Ferrites, Academic Press, NY, 1965.

20. Ravinder, D. and B. Ravikumar, "A study on elastic behaviour of rare earth substituted Mn-Zn ferrites," Mater. Lett., Vol. 57, 4471-4473, 2003.
doi:10.1016/S0167-577X(03)00164-2

21. Krishnamurthy, K. R., Ph.D. Thesis, Indian Institute of Technology, Madras, India, 1975.

22. Pujar, R. B., S. N. Kulakarni, and B. K. Chougule, "Compositional, temperature and frequency dependence of initial permeability in Zr4+ substituted Mg-Zn ferrites," Mater. Sci. Lett., Vol. 15, 1605-1608, 1996.

23. Mishra, S., K. Kundu, K. C. Barick, D. Bahadur, and D. Chakravorty, "Prepration of nanocrystalline MnFe2O4 doping with Ti4+ions using solid state reaction route ," J. Magn. Magn. Mater., Vol. 307, 222-226, 2006.
doi:10.1016/j.jmmm.2006.04.005

24. Radhakrishana, S. and K. V. S. Badrinath, "Studies on the ferroelectric-parelectric transition of dicalcium lead propnate," J. Matt. Sci. Lett., Vol. 3, 575-577, 1984.
doi:10.1007/BF00719615

25. Verma, A., T. C. Goel, R. G. Mrndirratta, and P. Kishan, "Magnetic properties of nickel-zinc ferrites prepared by the citrate precursor method ," J. Magn. Magn. Mater., Vol. 208, 13-19, 2000.
doi:10.1016/S0304-8853(99)00585-5

26. Smit, J., Magnetic Properties of Materials, McGraw Hill Book Company, NY, 1971.

27. Koh Gue, J., New Phy., Vol. 24, 353-358, Korean Phy. Soc., 1984.

28. Hady, L. K. and A. A. Kishk, "Electromagnetic scattering from conducting circular cylinder coated by metamaterials and loaded with helical strips under oblique incidence," Progress In Electromagnetics Research B, Vol. 3, 189-206, 2008.
doi:10.2528/PIERB07121107