Vol. 38
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-03-20
An Overall LTCC Package Solution for X-Band Tile T/R Module
By
Progress In Electromagnetics Research Letters, Vol. 38, 181-192, 2013
Abstract
An overall Low-Temperature Co-fired Ceramics (LTCC) package solution for X-band T/R module has been presented in this paper. This tile type package contributes to a dramatic reduction in size and weight of the T/R module. Moreover, an obvious merit of ceramic housing is better consistency of Coefficient of Thermal Expansion (CTE), compared with the traditional combination of ceramic board and metal housing. The schematic diagram and 3-D structure of the T/R module have been presented and a novel vertical interconnection based on Ball Grid Array (BGA) has been proposed to connect vias in the lid and those in the stage of the main LTCC pan. The LTCC T/R module has been fabricated and measured. It is compact in size (20×20× 2.6 mm3) and has a weight of 3.5 g. The measured transmit output power is 33±1 dBm in the frequency range from 8.8 GHz to 10.4 GHz, and the measured receive gain and Noise Figure are 29-30.5 dB and 2.6-2.8 dB, respectively.
Citation
Zhong Jun Yu, Zheng Xu, Yun-Kai Deng, and Zhi-Guang Zhang, "An Overall LTCC Package Solution for X-Band Tile T/R Module," Progress In Electromagnetics Research Letters, Vol. 38, 181-192, 2013.
doi:10.2528/PIERL13011009
References

1. Hauhe, M. S. and J. J. Wooldridge, "High density packaging of X-band active array modules," IEEE Transactions on Components, Packaging, and Manufacturing Technology, Vol. 20, No. 3, 279-291, 1997.
doi:10.1109/96.618228

2. Jantunen, H., T. Kangasvieri, J. Vahakangas, and S. Leppavuori, "Design aspects of microwave components with LTCC technique," Journal of the European Ceramic Society, Vol. 23, No. 14, 2541-2548, 2003.
doi:10.1016/S0955-2219(03)00155-9

3. Mancuso, Y., "Components and technologies for T/R modules," IEEE Aerospace and Electronic Systems Magazine, Vol. 25, No. 10, 39-43, 2010.
doi:10.1109/MAES.2010.5631725

4. Wang, Z., P. Li, R. M. Xu, and W. Lin, "A compact X-band receiver front-end module based on low temperature co-fired ceramic technology," Progress In Electromagnetics Research, Vol. 92, 167-180, 2009.
doi:10.2528/PIER09040701

5. Thorsell, M., M. Fagerlind, K. Andersson, N. Billstrom, and N. Rorsman, "An X-band AlGaN/GaN MMIC receiver front-end," EEE Microwave and Wireless Components Letters, Vol. 20, No. 1, 55-57, 2010.
doi:10.1109/LMWC.2009.2035968

6. Donelli, M. and P. Febvre, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 28, 71-81, 2012.
doi:10.2528/PIERC12012304

7. Donelli, M., R. Azaro, L. Fimognari, et al. "A planar electronically reconfigurable Wi-Fi band antenna based on a parasitic microstrip structure," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 623-626, 2007.
doi:10.1109/LAWP.2007.913274

8. Donelli, M., "A rescue radar system for the detection of victims trapped under rubble based on the independent component analysis algorithm," Progress In Electromagnetics Research M, Vol. 19, 173-181, 2011.
doi:10.2528/PIERM11061206

9. Rosenberger GmbH "Mini SMP straight plug PCB full detent,", 2011, Available: http://rosenberger.de/ok/images/documents/db/18S10140ML5.pdf.

10. Pillai, E. R., "Coax via-A technique to reduce crosstalk and enhance impedance match at vias in high-frequency multilayer packages verified by FDTD and MoM modeling," IEEE Trans. Microwave Theory and Tech., Vol. 45, No. 10, 1981-1985, 1997.
doi:10.1109/22.641808

11. Darwish, A., A. Ezzeddine, H. C. Huang, et al. "Analysis of three-dimensional embedded transmission lines (ETL's)," IEEE Microwave and Guided Wave Letters, Vol. 9, No. 11, 447-449, 1999.
doi:10.1109/75.808029

12. Machado, A. G., D. V. Martin, A. A. Lopez, and J. G. Menoyo, "Microstrip-to-stripline planar transitions on LTCC," IEEE MTT-S Microwave Workshop Series on Millimeter Wave Integration Technologies, 1-4, 2011.
doi:10.1109/IMWS3.2011.6061875

13. Kim, G., A. C. W. Lu, F. Wei, L. L. Wai, and J. Kim, "3D strip meander delay line structure for multilayer LTCC-based SIP applications," Electronic Components and Technology Conference, 2081-2085, 2008.

14. Schreiner, M., H. Leier, W. Menzel, and H. P. Feldle, "Architecture and interconnect technologies for a novel conformal active phased array radar module," IEEE MTT-S Microwave Symposium Digest, 567-570, 2003.