Vol. 61
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-07-27
Electromagnetic Boundaries with PEC/PMC Equivalence
By
Progress In Electromagnetics Research Letters, Vol. 61, 119-123, 2016
Abstract
The most general electromagnetic boundary, defined by linear and local boundary conditions, is defined in terms of conditions which can be called generalized impedance boundary conditions. Requiring that the boundary be equivalent to PEC and PMC boundaries for its two eigenplane waves, which property is known to exist for many of its special cases, it is shown that the recently introduced Generalized Soft-and-Hard/DB (GSHDB) boundary is the most general boundary satisfying this property.
Citation
Ismo Veikko Lindell, and Ari Sihvola, "Electromagnetic Boundaries with PEC/PMC Equivalence," Progress In Electromagnetics Research Letters, Vol. 61, 119-123, 2016.
doi:10.2528/PIERL16061805
References

1. Kong, J. A., Electromagnetic Wave Theory, EMW Publishing, Cambridge, MA, 2005.

2. Lindell, I. V. and A. Sihvola, "Perfect electromagnetic conductor," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 7, 861-869, 2005.
doi:10.1163/156939305775468741

3. Lindell, I. V. and A. Sihvola, "Electromagnetic boundary condition and its realization with anisotropic metamaterial," Phys. Rev. E, Vol. 79, No. 2, 026604 (7 pages), 2009.
doi:10.1103/PhysRevE.79.026604

4. Kildal, P.-S., "Definition of artificially soft and hard surfaces for electromagnetic waves," Electron. Lett., Vol. 24, 168-170, 1988.
doi:10.1049/el:19880112

5. Lindell, I. V., "Generalized soft-and-hard surface," IEEE Trans. Antennas Propag., Vol. 50, No. 7, 926-929, Jul. 2002.
doi:10.1109/TAP.2002.800698

6. Lindell, I. V. and A. Sihvola, "Soft-and-hard/DB boundary conditions realized by a skewon-axion medium," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 768-774, 2013.
doi:10.1109/TAP.2012.2223445

7. Lindell, I. V. and A. Sihvola, "Generalized soft-and-hard/DB boundary,", ArXiv:1606.04832v1, [physics.class-ph], Jun. 15, 2016.
doi:10.1109/TAP.2012.2223445

8. Lindell, I. V. and A. Sihvola, "Electromagnetic boundary conditions defined in terms of normal field components," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1128-1135, 2010.
doi:10.1109/TAP.2010.2041149

9. Lindell, I. V., Methods for Electromagnetic Field Analysis, Clarendon Press, Oxford, 1992.

10. Hanninen, I., I. V. Lindell, and A. H. Sihvola, "Realization of generalized soft-and-hard boundary," Progress In Electromagnetics Research, Vol. 64, 317-333, 2006.
doi:10.2528/PIER06062202

11. Shahvarpour, A., T. Kodera, A. Parsa, and C. Caloz, "Arbitrary electromagnetic conductor boundaries using Faraday rotation in a grounded ferrite slab," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 11, 2781-2793, 2010.
doi:10.1109/TMTT.2010.2078010

12. El-Maghrabi, H. M., A. M. Attiya, and E. A. H. Hashish, "Design of a perfect electromagnetic conductor (PEMC) boundary by using periodic patches," Progress In Electromagnetics Research M, Vol. 16, 159-169, 2011.
doi:10.2528/PIERM10112201

13. Zaluski, D., D. Muha, and S. Hrabar, "DB boundary based on resonant metamaterial inclusion," Metamaterials'2011, 820-822, Barcelona, Oct. 2011.

14. Caloz, C., et al. "Practical realization of perfect electromagnetic conductor (PEMC) boundaries using ferrites, magnetless non-reciprocal metamaterials (MNMs) and graphene," Proc. URSI EMTS, 652-655, Hiroshima, May 2013.

15. Zaluski, D., S. Hrabar, and D. Muha, "Practical realization of DB metasurface," Appl. Phys. Lett., Vol. 104, No. 234106, 2014.

16. Tedeschi, N., F. Frezza, and A. Sihvola, "On the perfectly matched layer and the DB on," JOSA A, Vol. 30, 1941-1946, Oct. 2013.

17. Zhang, B., H. Chen, B.-I. Wu, and J. A. Kong, "Extraordinary surface voltage effect in the invisibility cloak with an active device inside," Phys. Rev. Lett., Vol. 100, 063904 (4 pages), Feb. 15, 2008.

18. Yaghjian, A. D. and S. Maci, "Alternative derivation of electromagnetic cloaks and concentrators," New J. Phys., Vol. 10, 115022 (29 pages), 2008; Corrigendum, New J. Phys., Vol. 11, 039802 (1 page), 2009.

19. Weder, R., "The boundary conditions for point transformed electromagnetic invisible cloaks," J. Phys. A, Vol. 41, 415401 (17 pages), 2008.

20. Kildal, P.-S., "Fundamental properties of canonical soft and hard surfaces, perfect magnetic conductors and the newly introduced DB surface and their relation to different practical applications included cloaking," Proc. ICEAA'09, 607-610, Torino, Italy, Aug. 2009.