Vol. 65
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-01-26
Compact Slow-Wave Branch-Line Coupler Using Crossing Bond Wires
By
Progress In Electromagnetics Research Letters, Vol. 65, 117-121, 2017
Abstract
This paper proposes a compact and miniaturized branch-line coupler using a crossing bond wire structured slow-wave branch line (CBWSWB). The proposed coupler achieves a size reduction of 82% compared with a conventional implementation. Measured S11, S21, S31 and S41 of the proposed coupler are better than -24, -3.7, -3.7 and -28 dB at 3 GHz, respectively. Furthermore, the phase difference between through and coupling ports of the coupler is within 1°.
Citation
Bo Zhou, Qiang Ma, Liwei Yan, Na Zhou, and Chong-Hu Cheng, "Compact Slow-Wave Branch-Line Coupler Using Crossing Bond Wires," Progress In Electromagnetics Research Letters, Vol. 65, 117-121, 2017.
doi:10.2528/PIERL16120802
References

1. Chiang, Y. C. and C. Y. Chen, "Design of a wide-band lumped-element 3 dB quadrature coupler," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 3, 476-479, Mar. 2001.
doi:10.1109/22.910551

2. Brzezina, G. and L. Roy, "A miniature lumped element LTCC quadrature hybrid coupler for GPS applications ," IEEE Antenna and Propagation Society Int. Conf., 1-4, 2008.

3. Sakagami, I., M. Tahara, and M. Fuji, "Lumped-element type D branch coupler," Proc. IEEE Asic-Pacific Microwave Conf., 2656-2659, 2009.

4. Rehnmark, S., "Meander-folded coupled lines," IEEE Trans. Microw. Theory Tech., Vol. 26, No. 4, 225-230, Apr. 1978.
doi:10.1109/TMTT.1978.1129355

5. Yang, J. G., Y. Jeong, S. Choi, and K. Yang, "A new compact 3-D hybrid coupler using multi-layer microstrip lines at 15 GHz," Proc. of the 36th European Microwave Conf., 25-28, 2006.
doi:10.1109/EUMC.2006.281172

6. Liao, S. S., P. T. Sun, N. C. Chin, and J. T. Peng, "A novel compact-size coupler branch-line coupler," IEEE Microw. Wirel. Compon. Lett., Vol. 15, No. 9, 588-590, 2005.
doi:10.1109/LMWC.2005.855378

7. Xu, H.-X., G.-M. Wang, and J.-G. Liang, "Novel composite right/left handed transmission lines using fractal geometry and compact microwave devices application," Radio Science, Vol. 46, RS5008, 2011.

8. Xu, H.-X., G.-M. Wang, P.-L. Chen, and T.-P. Li, "Miniaturized fractal-shaped branch-line coupler for dual-band application based on composite right/left handed transmission lines," Journal of Zhejiang University --- SCIENCE C, Vol. 12, No. 9, 766-773, 2011.
doi:10.1631/jzus.C1000343

9. Wang, J., B. Z. Wang, Y. X. Guo, L. C. Ong, and S. Xiao, "A compact slow-wave microstrip branch-line coupler with high performance," IEEE Microw. Wirel. Compon. Lett., Vol. 17, No. 7, 501-503, Jul. 2007.
doi:10.1109/LMWC.2007.899307

10. Wang, J., B. Z. Wang, Y. X. Guo, L. C. Ong, and S. Xiao, "Compact slow-wave microstrip rat-race coupler," Electron. Lett., Vol. 43, No. 2, 111-113, Jun. 2007.
doi:10.1049/el:20073191

11. Sun, K. O., S. J. Ho, C. C. Yen, and D. V. D. Weide, "A compact branch-line coupler using discontinuous microstrip lines," IEEE Microw. Wirel. Compon. Lett., Vol. 15, No. 8, 519-520, Aug. 2005.
doi:10.1109/LMWC.2005.852789

12. Lim, Y. K. and H. Y. Lee, "Novel slow-wave structure using bond-wire for minimizing microwave devices," Proc. IEEE Asia-Pacific Microwave Conf., 1-4, 2007.

13. Lim, Y. and H. Y. Lee, "Novel miniaturized branch-line coupler using bond wire slow-wave structure," Proc. IEEE Asia-Pacific Microwave Conf., 1-4, 2008.

14. Zhou, B., W. X. Sheng, and H. Wang, "Slow-wave effect enhanced branch line power divider using crossing bond wires," IET Electronics Letter, Vol. 47, No. 22, 2011.

15. Bahl, I., Lumped Elements for RF and Microwave Circuits, Artech House, 2003.

16. Microwave office, Applied Wave Research Corporation, , EI Segundo, CA.