Vol. 33
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-10-30
Three Dimensional Radar Coincidence Imaging
By
Progress In Electromagnetics Research M, Vol. 33, 223-238, 2013
Abstract
Two dimensional (2D) radar coincidence imaging is an instantaneous imaging technique which can obtain 2D focused high-resolution images using a single pulse without the limitation to the target relative motions. This paper extends the imaging method to three dimensions. Such a three-dimensional (3D) radar imaging technique does not rely on Doppler frequency for resolution and has an extremely short imaging time (shorter than a pulse width), resulting in two remarkable properties: 1) it does not require the relative rotation between targets and radar; 2) it can considerably avoid the image blurring in processing noncooperative targets without motion compensation. 3D radar coincidence imaging consequently can derive high-quality images for either the targets that are stationary with respect to radars or the ones in maneuvering 3D rotations. The validity of the proposed imaging technique is confirmed by numerical simulations.
Citation
Dongze Li Xiang Li Yongqiang Cheng Yu-Liang Qin Hongqiang Wang , "Three Dimensional Radar Coincidence Imaging," Progress In Electromagnetics Research M, Vol. 33, 223-238, 2013.
doi:10.2528/PIERM13081101
http://www.jpier.org/PIERM/pier.php?paper=13081101
References

1. Soumekh, M., "Automatic aircraft landing using interferometric inverse synthetic aperture radar imaging," IEEE Trans. Image Process., Vol. 5, No. 9, 1335-1345, 1996.
doi:10.1109/83.535845

2. Mayhan, J. T., et al., "High resolution 3D snapshot ISAR imaging and feature extraction," IEEE Trans. Aerosp. Electron. Syst., Vol. 37, No. 2, 630-642, 2001.
doi:10.1109/7.937474

3. Fortuny, J., "An efficient 3-D near-field ISAR algorithm," IEEE Trans. Aerosp. Electron. Syst., Vol. 34, No. 4, 1261-1270, 1998.
doi:10.1109/7.722713

4. Ausherman, D. A., A. Kozma, J. L. Walker, H. M. Jones, and E. C. Poggio, "Developments in radar imaging," IEEE Trans. Aerosp. Electron. Syst., Vol. 20, No. 4, 363-400, 1984.
doi:10.1109/TAES.1984.4502060

5. Bao, Z., , M. D. Xing, and T. Wang, Radar Imaging Technique, Publish House Electron. Ind., Beijing, 2005.

6. Chen, V. C. and H. Ling, Time Frequency Transforms for Radar Imaging and Signal Analysis, Artech House, MA, 2002.

7. Itoh, T., H. Sueda, and Y. Watanabe, "Motion compensation for ISAR via centroid tracking," IEEE Trans. Aerosp. Electron. Syst., Vol. 32, No. 3, 1191-1197, 1996.
doi:10.1109/7.532283

8. Thayaparan, T., G. Lampropoulos, S. K. Wong, and E. Rise-borough, "Application of adaptive joint time-frequency algorithm for focusing distorted ISAR images from simulated and measured for focusing distorted ISAR images from simulated and measured ," IEE Proc. --- Radar Sonar Navig., Vol. 150, No. 4, 213-220, 2003.
doi:10.1049/ip-rsn:20030670

9. Li, D., et al., "Radar coincidence imaging: An instantaneous imaging technique with stochastic signals," IEEE Trans. Geosci. Remote Sens., No. 99, 1, 2013.
doi:http://dx.doi.org/10.1109/TGRS.2013.2258929

10. Shih, Y., "Quantum imaging," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 13, No. 4, 1016-1030, 2007.
doi:10.1109/JSTQE.2007.902724

11. Margaret, C. and B. Brett, Fundamentals of Radar Imaging, SIAM, PA, 2009.

12. Liu, H.-Q., H.-C. So, K. W. K. Lui, and F. K. W. Chan, "Sensor selection for target tracking in sensor networks," Progress In Electromagnetics Research, Vol. 95, 267-282, 2009.
doi:10.2528/PIER09070802

13. Liu, H.-Q. and H.-C. So, "Target tracking with line-of-sight identi¯cation in sensor networks under unknown measurement noises ," Progress In Electromagnetics Research , Vol. 97, 373-389, 2009.
doi:10.2528/PIER09090701

14. Gatti, A., E. Brambilla, M. Bache, and L. A. Lugiato, "Ghost imaging with thermal light: Comparing entanglement and classical correlation ," Phys. Rev. Lett., Vol. 93, No. 9, 093602, 2004.
doi:10.1103/PhysRevLett.93.093602