Design and Execution of Miniaturized Multi-Band Antenna for Next-Generation Wireless Communication System
Prasanna L. Zade,
Sachin S. Khade,
Deveshree Marotkar,
Vaishali Dhede,
Pravin Tajane,
Pranjali M. Jumle and
Prabhakar Domaji Dorge
This paper describes the design methodology of a compact multiband microstrip patch antenna intended for next-generation wireless communication applications. The proposed antenna operates over seven distinct frequency bands: 1.25-1.32 GHz, 2.30-2.44 GHz, 2.50-2.75 GHz, 2.92-3.25 GHz, 3.40-3.65 GHz, 3.70-4.23 GHz, and 4.70-6.0 GHz. These operating bands support a wide range of wireless services, including LTE, 5G communications, Wi-MAX, ISM applications, radar systems, and broadband wireless communications. Multiband performance is achieved through the incorporation of three strategically placed slits in the radiating patch along with a square split-ring resonator (SSRR). By adjusting the dimensions of the slits and the position of the SSRR, the operating frequency bands can be effectively tuned. The proposed antenna occupies a compact footprint of 40 × 40 mm2 and consists of a radiating patch, a partial ground plane, and an SSRR structure. Simulation results demonstrate resonant frequencies at 1.3, 2.38, 2.66, 3.0, 3.5, 4.2, 4.9, and 5.7 GHz. Owing to its compact size, multiband capability, and simple structure, the proposed antenna offers advantages in terms of reduced cost, lower system complexity, and miniaturization, making it suitable for modern wireless communication systems.