Vol. 154
Latest Volume
All Volumes
PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-03-28
A Novel Asymmetric Spoof Surface Plasmon Polariton Transmission Line for High Gain Endfire Radiation Using Phase Reversal Condition
By
Progress In Electromagnetics Research C, Vol. 154, 97-103, 2025
Abstract
This paper introduces a novel asymmetric design for spoof surface plasmon polariton (SSPP) transmission line-based endfire antenna. It utilizes the phase reversal condition in an asymmetric SSPP transmission line to achieve high gain endfire radiation. The antenna design uses mono-planar fabrication using the CPW concept. Achieving asymmetry in the SSPP transmission line involves simply bending a straight SSPP transmission line containing H-shaped unit cells. Successive upward and downward bending of the transmission line introduces the phase reversal condition and increases the antenna's gain. Notably, there are no limitations on the length over which bending occurs to achieve the phase reversal condition. Simple design principles, a single-layer configuration, and high gain are the advantages of the antenna. Results from the fabricated prototype closely match simulation results. Within the 7.7-8.3 GHz operating band, the antenna exhibits a 7.5% bandwidth and a peak gain of 13.6 dBi. It can find applications in various wireless communication systems requiring high gain and endfire radiations.
Citation
Dhruba Charan Panda, Bikash K. Santi, Biku Raut, Deepak Kumar Naik, and Rajanikanta Swain, "A Novel Asymmetric Spoof Surface Plasmon Polariton Transmission Line for High Gain Endfire Radiation Using Phase Reversal Condition," Progress In Electromagnetics Research C, Vol. 154, 97-103, 2025.
doi:10.2528/PIERC24120604
References

1. Chopra, Rinkee and Girish Kumar, "Compact, broadband, and high gain directional endfire antenna," Microwave and Optical Technology Letters, Vol. 62, No. 7, 2546-2553, 2020.

2. Tian, Ying Zhou, Yong Mei Pan, Xi Yao Liu, and Kwok Wa Leung, "An SIW-based wideband endfire filtering magneto-electric dipole antenna for millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 12, 9986-9991, 2023.

3. Pendry, J. B., L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, No. 5685, 847-848, 2004.

4. Chaparala, Rishitej, Shaik Imamvali, and Sreenivasulu Tupakula, "Enhancement of spoof surface plasmon polariton waveguide performance through modified groove width," Optical Engineering, Vol. 63, No. 5, 055102, 2024.

5. Xiao, Binggang, Xiao Tu, Alexander Fyffe, Xiumin Wang, and Zhimin Shi, "A compact, high gain, spoof surface plasmon polariton sawtooth end-fire antenna," Journal of Modern Optics, Vol. 67, No. 7, 654-660, 2020.

6. Li, Wei and Wanlin Zhao, "Miniaturized low-profile end-fire antenna based on spoof surface plasmon polaritons," Applied Physics A, Vol. 130, No. 11, 796, Oct. 2024.

7. Bao, Yan, You-bao Wang, Tian-hao Zhang, and Liu-yisi Zhao, "A novel ultra-wideband end-fire antenna based on spoof surface plasma polaritons," Frequenz, Vol. 79, No. 1-2, 71-80, 2025.

8. Zhao, Hongxin, Jinlun Li, Qiuyi Zhang, Shunli Li, and Xiaoxing Yin, "Spoof surface plasmon polariton antenna with dual-band endfire gain and flexible small frequency ratio," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 11, 11079-11084, 2022.

9. Imamvali, Shaik, Rishitej Chaparla, Sreenivasulu Tupakula, and Divya Chaturvedi, "Novel SSPP sensor system with octagon-shaped unit cell for liquid analyte dielectric constant detection," 2023 Photonics & Electromagnetics Research Symposium (PIERS), 1467-1473, Prague, Czech Republic, Jul. 2023.

10. Imamvali, Shaik, T. Nagarajan, Rishitej Chaparala, and Sreenivasulu Tupakula, "Spoof surface plasmon polaritons based detection of glucose in blood phantom for medical diagnosis," IEEE Sensors Journal, Vol. 24, No. 23, 38952-38961, 2024.

11. Kandwal, Abhishek, Qingfeng Zhang, Xiao-Lan Tang, Louis Wy Liu, and Ge Zhang, "Low-profile spoof surface plasmon polaritons traveling-wave antenna for near-endfire radiation," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 2, 184-187, 2018.

12. Ge, Shangkun, Qingfeng Zhang, Amir K. Rashid, Ge Zhang, Chi-Yuk Chiu, and Ross D. Murch, "Analysis of asymmetrically corrugated goubau-line antenna for endfire radiation," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 11, 7133-7138, 2019.

13. Rudramuni, Karthik, Puneeth K. T. Rajanna, Krishnamoorthy Kandaswamy, Basudev Majumder, and Qingfeng Zhang, "Goubau line based end-fire antenna," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 12, e22008, 2019.

14. O'Connor, Ellen M., David R. Jackson, and Stuart A. Long, "Extension of the Hansen-Woodyard condition for endfire leaky-wave antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 1201-1204, 2010.

15. Liu, Leilei, Minghong Chen, and Xiaoxing Yin, "Single-layer high gain endfire antenna based on spoof surface plasmon polaritons," IEEE Access, Vol. 8, 64139-64144, 2020.

16. Ge, Shangkun, Qingfeng Zhang, Amir Khurrum Rashid, Hong Wang, and Ross D. Murch, "Design of high-gain and small-aperture endfire antenna using a phase-reversal technique," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 7, 5142-5150, 2020.

17. Jiang, Huan, Xiang-yu Cao, Huan-huan Yang, Jun Gao, and Liao-ri Ji-Di, "Single-layer broadband endfire antenna with high-gain and stable beams based on spoof surface plasmon polaritons," Radioengineering, Vol. 31, No. 3, 295-301, 2022.

18. Xiao, Mingru, Amir K. Rashid, Baiyang Liu, Rengui Fan, and Qingfeng Zhang, "Design of high-gain single-layer endfire antenna using phase-reversed asymmetric spoof surface plasmon polaritons," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 3, 641-644, 2023.