Vol. 115
Latest Volume
All Volumes
PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-12-05
PIER Letters
Vol. 115, 9-14, 2024
download: 18
Rapid Estimation of Shielding Effectiveness in Chest and Abdomen Regions of Electromagnetic Shielding Clothing
Yi Yang , Miaomiao Kang and Xiuchen Wang
The shielding effectiveness (SE) of electromagnetic shielding (EMS) clothing is primarily achieved through experimental testing, but this method comes with drawbacks such as high cost, extended time, and imprecise testing outcomes. In order to quickly and cost-effectively obtain the protective performance of clothing, this article proposes a fast estimation method for the local SE of EMS clothing, which can quickly estimate the SE in the chest and abdomen regions through human body shape parameters. Firstly, an elliptical conical surface model is established for the chest and abdomen regions according to the shape of the human body. Following the principle of calculus, a local SE solution method based on this model is constructed. Additionally, a model correction coefficient that takes into account the impact of holes and seams is offered. Finally, a rapid estimation method is established for the SE of the chest and abdomen regions of the clothing. Experiments are ultimately designed to validate the model. In conclusion, the estimated values of the model are in agreement with the measured values, and it exhibits fast and efficient performance. This paper provides a new way to rapidly estimate the SE of EMS clothing in local areas, and plays an important role in promoting the design, evaluation and related detection of EMS clothing.
Rapid Estimation of Shielding Effectiveness in Chest and Abdomen Regions of Electromagnetic Shielding Clothing
2023-12-05
PIER Letters
Vol. 115, 1-8, 2024
download: 9
Design of Radiation Protection Topology for Pulsed High Currents in Electromagnetic Launcher Based on Decision Variable Analysis
Heyang Wang , Jian Sun , Yuantao Cong , Mingjie Zhong and Binyu Zhu
Aiming to address the problem of radiation interference caused by pulse high current in the electromagnetic launcher's working process, this study presents a model for selecting materials for the protection of radiation sources and designing their topological structure. Initially, an analysis is conducted on the selection of materials and topology for the protective characteristics, considering factors such as protective effectiveness, production cost, structural rigidity, reliability, and mobility. Through shielding process, several factors influencing material selection are identified. Subsequently, weights and excitation functions are assigned to these factors to generate an applicability evaluation function of the protective materials, aligning with the test requirements. Next, three structures are defined for the test environment: inner shield, outer shield, and wrap-around shield, in accordance with the established protection topology. Using ANSYS, a three-dimensional simulation model is constructed, featuring a peak pulse current of 281.98 kA and an armature mass of 10 g. The shielding performance of materials with thicknesses of 3 mm, 5 mm, 7 mm, and 10 mm is analyzed. Simulation results demonstrate that the outer shielding structure and wrap-around shielding structure can achieve a magnetic induction strength of less than 0.5 T at approximately 6 mm thickness, validating the feasibility of the proposed model. This paper presents a method for addressing electromagnetic radiation protection from the electromagnetic launcher, ensuring the safety of personnel near the gas pedal and the stable operation of electronic components. The findings have significant implications for the future application of the system.
Design of Radiation Protection Topology for Pulsed High Currents in Electromagnetic Launcher based on Decision Variable Analysis