Vol. 154
Latest Volume
All Volumes
PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-03-27
Unsupervised Deep Learning-Based Source Synthesis Method for Fast Power Pattern Shaping
By
Progress In Electromagnetics Research C, Vol. 154, 77-83, 2025
Abstract
This paper introduces a deep neural network (DNN) training framework to tackle the general power pattern synthesis problem. Compared to the iterative solving method, the DNN-based approach offers a shorter response time, which is significant in adaptive scenarios. In contrast to the widely adopted supervised learning framework, the encoder-decoder network structure utilized in this paper does not necessitate the pre-synthesized results as the training label. The issue of difficult convergence in training caused by the non-uniqueness of the solution is well solved in our method.
Citation
Lu Zhuang, and Jun Ou Yang, "Unsupervised Deep Learning-Based Source Synthesis Method for Fast Power Pattern Shaping," Progress In Electromagnetics Research C, Vol. 154, 77-83, 2025.
doi:10.2528/PIERC24123003
References

1. Oliveri, Giacomo, Paolo Rocca, Marco Salucci, and Andrea Massa, "Holographic smart EM skins for advanced beam power shaping in next generation wireless environments," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 6, 171-182, 2021.

2. Mitchell, M., An Introduction to Genetic Algorithms, MIT press, 1998.
doi:The server didn't respond in time.

3. Kennedy, J. and R. Eberhart, "Particle swarm optimization," Proceedings of ICNN'95 --- International Conference on Neural Networks, Vol. 4, 1942-1948, 1995.

4. Ismail, Taisir H. and Zoubir M. Hamici, "Array pattern synthesis using digital phase control by quantized particle swarm optimization," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 6, 2142-2145, 2010.

5. Bucci, O. M., G. Franceschetti, G. Mazzarella, and G. Panariello, "Intersection approach to array pattern synthesis," IEE Proceedings H (Microwaves, Antennas and Propagation), Vol. 137, No. 6, 349-357, 1990.

6. Rocca, Paolo, Randy L. Haupt, and Andrea Massa, "Sidelobe reduction through element phase control in uniform subarrayed array antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 437-440, 2009.

7. Oliveri, Giacomo, Matteo Carlin, and Andrea Massa, "Complex-weight sparse linear array synthesis by Bayesian compressive sampling," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2309-2326, 2012.

8. Abdulqader, Ahmed Jameel, Jafar Ramadhan Mohammed, and Raad H. Thaher, "Antenna pattern optimization via clustered arrays," Progress In Electromagnetics Research M, Vol. 95, 177-187, 2020.

9. Abdulkader, Ahmed J., Jafar R. Mohammed, and Raad H. Thaher, "Phase-only nulling with limited number of controllable side elements," Progress In Electromagnetics Research C, Vol. 99, 167-178, 2020.

10. Shi, Dan, Cheng Lian, Keyi Cui, Yazhou Chen, and Xiaoyong Liu, "An intelligent antenna synthesis method based on machine learning," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 7, 4965-4976, 2022.

11. Niu, Chen, Mario Phaneuf, Tianke Qiu, and Puyan Mojabi, "A deep learning-based approach to design metasurfaces from desired far-field specifications," IEEE Open Journal of Antennas and Propagation, Vol. 4, 641-653, 2023.

12. Koziel, Slawomir and Muhammad Abdullah, "Machine-learning-powered EM-based framework for efficient and reliable design of low scattering metasurfaces," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 4, 2028-2041, 2021.

13. Zhou, Zhao, Zhaohui Wei, Jian Ren, Yingzeng Yin, Gert Frølund Pedersen, and Ming Shen, "Two-order deep learning for generalized synthesis of radiation patterns for antenna arrays," IEEE Transactions on Artificial Intelligence, Vol. 4, No. 5, 1359-1368, 2022.

14. Zhang, Jiapeng, Chang Qu, Xingliang Zhang, and Hui Li, "A deep learning method for the phase-only pattern synthesis," 2023 International Applied Computational Electromagnetics Society Symposium (ACES --- China), 1-2, Hangzhou, China, Aug. 2023.

15. Yang, Xin, Deqiang Yang, Yanwen Zhao, Jin Pan, and Yongpin Chen, "Synthesis of linear sparse array using DNN-based machine-learning method," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 8, 6513-6522, 2023.

16. Ren, Simiao, Ashwin Mahendra, Omar Khatib, Yang Deng, Willie J. Padilla, and Jordan M. Malof, "Inverse deep learning methods and benchmarks for artificial electromagnetic material design," Nanoscale, Vol. 14, No. 10, 3958-3969, 2022.

17. Hansen, Per Christian, Rank-Deficient and Discrete ILL-posed Problems: Numerical Aspects of Linear Inversion, SIAM, 1998.

18. Kabir, Humayun, Ying Wang, Ming Yu, and Qi-Jun Zhang, "Neural network inverse modeling and applications to microwave filter design," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 4, 867-879, 2008.

19. Liu, Dianjing, Yixuan Tan, Erfan Khoram, and Zongfu Yu, "Training deep neural networks for the inverse design of nanophotonic structures," ACS Photonics, Vol. 5, No. 4, 1365-1369, 2018.

20. Yuan, Lin, Lan Wang, Xue-Song Yang, Hao Huang, and Bing-Zhong Wang, "An efficient artificial neural network model for inverse design of metasurfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 6, 1013-1017, 2021.

21. Gu, Zheming, Da Li, Yunlong Wu, Yudi Fan, Chengting Yu, Hongsheng Chen, and Er-Ping Li, "A solution to the dilemma for FSS inverse design using generative models," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 6, 5100-5109, 2023.

22. Prince, Simon J. D., Understanding Deep Learning, MIT press, 2023.

23. Osipov, Andrey V. and Sergei A. Tretyakov, Modern Electromagnetic Scattering Theory with Applications, John Wiley & Sons, 2017.

24. Brown, Trevor, Chaitanya Narendra, Yousef Vahabzadeh, Christophe Caloz, and Puyan Mojabi, "On the use of electromagnetic inversion for metasurface design," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 1812-1824, 2019.

25. Cui, Can, Wen Tao Li, Xiu Tiao Ye, Yong Qiang Hei, Paolo Rocca, and Xiao Wei Shi, "Synthesis of mask-constrained pattern-reconfigurable nonuniformly spaced linear arrays using artificial neural networks," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 6, 4355-4368, 2022.

26. Niu, Chen, Max Kelly, and Puyan Mojabi, "An encoder-only transformer to generate power patterns from far-field performance criteria," 2022 16th European Conference on Antennas and Propagation (EuCAP), 1-4, Madrid, Spain, Mar. 2022.

27. Caorsi, Salvatore and Gian Luigi Gragnani, "Inverse-scattering method for dielectric objects based on the reconstruction of the nonmeasurable equivalent current density," Radio Science, Vol. 34, No. 1, 1-8, 1999.

28. Salucci, Marco, Angelo Gelmini, Giacomo Oliveri, Nicola Anselmi, and Andrea Massa, "Synthesis of shaped beam reflectarrays with constrained geometry by exploiting nonradiating surface currents," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 11, 5805-5817, 2018.

29. Team, P., PyTorch Official Website, Available: https://pytorch.org/docs/, 2023.