Vol. 154
Latest Volume
All Volumes
PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-03-31
A Broadband Vertical Transition from Waveguide to Microstrip Based on Narrow-Wall Excitation
By
Progress In Electromagnetics Research C, Vol. 154, 105-109, 2025
Abstract
In this paper, a broadband vertical rectangular waveguide (RWG)-to-microstrip line (MSL) transition structure for millimeter-wave solid-state circuits is proposed. The planar circuit in this transition is composed of a V-shaped probe and tapered fin-line ground, and the probe is inserted into the waveguide through a slot on the narrow side of the RWG. To facilitate energy coupling from RWG to MSL, a back-short with a length of a quarter-wavelength is designed on the bottom side of the probe to achieve effective electric coupling. A back-to-back prototype module has been designed to verify the performance of the transition. The measurement results show that the return loss of the back-to-back transition structure is better than 13 dB across the entire Ka-band, with the insertion loss (IL) of a single transition better than 0.55 dB. The measurement results agree well with simulation ones, validating the feasibility of the proposed transition circuit. A tolerance analysis is performed through simulations to verify the reliability of this transition design.
Citation
Jun Dong, Bingqing Zhong, Jing Zheng, Feng Yao, Jinxin Yin, and Hao Peng, "A Broadband Vertical Transition from Waveguide to Microstrip Based on Narrow-Wall Excitation," Progress In Electromagnetics Research C, Vol. 154, 105-109, 2025.
doi:10.2528/PIERC24123104
References

1. Thompson, John, Xiaohu Ge, Hsiao-Chun Wu, Ralf Irmer, Hong Jiang, Gerhard Fettweis, and Siavash Alamouti, "5G wireless communication systems: Prospects and challenges [guest editorial]," IEEE Communications Magazine, Vol. 52, No. 2, 62-64, 2014.

2. Gupta, A. and R. K. Jha, "A survey of 5G network: Architecture and emerging technologies," IEEE Access, Vol. 3, 1206-1232, 2015.

3. Deslandes, D. and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 2, 68-70, 2001.

4. Mottonen, V. S. and A. V. Raisanen, "Novel wide-band coplanar waveguide-to-rectangular waveguide transition," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1836-1842, 2004.

5. Dong, Yunfeng, Tom K. Johansen, Vitaliy Zhurbenko, and Peter Jesper Hanberg, "Rectangular waveguide-to-coplanar waveguide transitions at U-band using E-plane probe and wire bonding," 2016 46th European Microwave Conference (EuMC), 5-8, London, UK, 2016.

6. Gao, Yang, Fan Zhang, Yingying Qiao, Jiawei Zang, Lei Li, and Xiaobang Shang, "A microstrip filter direct-coupled amplifier based on active coupling matrix synthesis," Frontiers of Information Technology & Electronic Engineering, Vol. 22, No. 9, 1260-1269, 2021.

7. Hafeez-Ur-Rehman, Ha Il Song, Sean Park, and Jae-Hyung Jang, "Broadband partially covered microstrip-to-waveguide transition with enhanced radiation suppression for millimeter-wave transmission," IEEE Microwave and Wireless Technology Letters, Vol. 34, No. 4, 367-370, 2024.

8. Xu, Zhengbin, Jie Xu, and Cheng Qian, "Novel in-line microstrip-to-waveguide transition based on E-plane probe T-junction structure," IEEE Microwave and Wireless Components Letters, Vol. 31, No. 9, 1051-1054, 2021.

9. Hannachi, C., T. Djerafi, and S. O. Tatu, "Broadband E-band WR12 to microstrip line transition using a ridge structure on high-permittivity thin-film material," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 7, 552-554, 2018.

10. Zhang, Bo, Huali Zhu, and Yong Zhang, "Wideband in-line waveguide-to-microstrip transition with antisymmetric rectangular probes," IEEE Microwave and Wireless Technology Letters, Vol. 34, No. 6, 591-594, 2024.

11. Zhang, Bo, Yong Zhang, Chengkai Wu, and Tianhao Cao, "Millimeter-wave broadband waveguide-to-microstrip transition using a bifurcated probe," IEEE Microwave and Wireless Components Letters, Vol. 32, No. 9, 1031-1034, 2022.

12. Zhou, Ivan and Jordi Romeu, "Ultrawideband microstrip to waveguide transition for 5G millimeterwave applications," 2022 16th European Conference on Antennas and Propagation (EuCAP), 1-4, Madrid, Spain, 2022.

13. Topak, Eray, Jürgen Hasch, and Thomas Zwick, "Compact topside millimeter-wave waveguide-to-microstrip transitions," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 12, 641-643, 2013.

14. Häseker, Janis Sebastian and Martin Schneider, "90 degree microstrip to rectangular dielectric waveguide transition in the W-band," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 6, 416-418, 2016.

15. Zhou, Ivan and Jordi Romeu Robert, "Ultra-wideband narrow wall waveguide-to-microstrip transition using overlapped patches," Sensors, Vol. 22, No. 8, 2964, 2022.
doi:10.3390/s22082964

16. Seo, Kazuyuki, Kunio Sakakibara, and Nobuyoshi Kikuma, "Narrow-wall-connected microstrip-to-waveguide transition using V-shaped patch element in millimeter-wave band," IEICE Transactions on Communications, Vol. 93, No. 10, 2523-2530, 2010.

17. Deutschmann, Björn and Arne F. Jacob, "A full W-band waveguide-to-differential microstrip transition," 2019 IEEE MTT-S International Microwave Symposium (IMS), 335-338, Boston, MA, USA, 2019.

18. Zhou, Ivan, Lluís Pradell, José Maria Villegas, Neus Vidal, Miquel Albert, Lluís Jofre, and Jordi Romeu, "Microstrip-fed 3D-printed H-sectorial horn phased array," Sensors, Vol. 22, No. 14, 5329, 2022.
doi:10.3390/s22145329

19. Klemm, M., I. Z. Kovcs, G. F. Pedersen, and G. Troster, "Novel small-size directional antenna for UWB WBAN/WPAN applications," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 12, 3884-3896, 2005.

20. Xu, Liang, Zhen-Yu Xin, and Jun He, "A compact triple-band fork-shaped antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 40, 61-69, 2013.

21. Pradnyana, Kadek Dwi, Damaraji Wijoyono, Gradi Adriandi, and Fitri Yuli Zulkifli, "Modified Y-shape patch ultra-wide band monopole antenna," TENCON 2017 --- 2017 IEEE Region 10 Conference, 1620-1623, Penang, Malaysia, 2017.