Vol. 40
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-12-17
A New Self-Decoupling Magnetic Levitation Generator for Wind Turbines
By
Progress In Electromagnetics Research M, Vol. 40, 111-118, 2014
Abstract
In order to decouple traditional levitation windings and armature windings, a new self-decoupling magnetic levitation generator (SDMLG) is proposed for wind turbines. This new generator adopts double-stator structure. The armature windings are in the outer stator, and the levitation windings are in the inner stator. The rotor is made of a distributed hollow structure, so that it can effectively decouple the levitation subsystem and armature subsystem. The new structure and operating principle of the generator are presented in this paper. Then the expressions of levitation forces are deduced by analyzing magnetic flux distributions and winding flux linkages. Finite-element analysis method (FEA) is used as the tool for analyzing the performance of the new generator. And the results verify that the levitation windings and armature windings are effectively decoupled.
Citation
Yanjun Yu Huangqiu Zhu Si Zeng , "A New Self-Decoupling Magnetic Levitation Generator for Wind Turbines," Progress In Electromagnetics Research M, Vol. 40, 111-118, 2014.
doi:10.2528/PIERM14110506
http://www.jpier.org/PIERM/pier.php?paper=14110506
References

1. Zurcher, F., T. Nussbaumer, and J. W. Kolar, "Motor torque and magnetic levitation force generation in bearingless brushless multipole motors," IEEE Transactions on Mechatronics, Vol. 17, No. 6, 1088-1097, 2012.
doi:10.1109/TMECH.2011.2159511

2. Asama, J., D. Kanehara, and T. Oiwa, "Levitation performance of a two-axis actively regulated consequent-pole bearingless motor," IEEE Transactions on Energy Conversion, Vol. 28, No. 4, 894-901, 2013.
doi:10.1109/TEC.2013.2283724

3. Nishida, K., T. Ahmed, and M. Nakaoka, "A cost-effective high-efficiency power conditioner with simple MPPT control algorithm for wind-power grid integration," IEEE Transactions on Industry Applications, Vol. 47, No. 2, 893-900, 2011.
doi:10.1109/TIA.2010.2103294

4. Chinchilla, M., S. Arnaltes, and J. C. Burgos, "Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid," IEEE Transactions on Energy Conversion, Vol. 21, No. 1, 130-135, 2006.
doi:10.1109/TEC.2005.853735

5. Wai, R. J., C. Y. Lin, and Y. R. Chang, "Novel maximum power extraction algorithm for PMSG wind generation system," IET Electric Power Applications, Vol. 1, No. 2, 275-283, 2007.
doi:10.1049/iet-epa:20050514

6. Fan, Y. H., et al., "Passive magnetic bearing design for a small wind generator system," Applied Mechanics and Materials, Vol. 145, 174-178, 2012.

7. Patel, N. and M. N. Uddin, "Design and performance analysis of a magnetically levitated vertical axis wind turbine based axial flux PM generator," 7th International Conference on Electrical and Computer Engineering, ICECE 2012, 741-745, 2012.
doi:10.1109/ICECE.2012.6471657

8. Shrestha, G., et al., "Structural flexibility: A solution for weight reduction of large direct-drive wind-turbine generators," IEEE Transactions on Energy Conversion, Vol. 25, No. 3, 732-740, 2010.
doi:10.1109/TEC.2010.2048713

9. Zhang, G. M., L. Mei, and D. M. Wang, "A direct-drive wind power generator along horizontal axis with five-degree of freedom magnetic levitation,", 201110083824.6, Patent, China, Apr. 2, 2011.

10. Sun, X. D., L. Chen, and Z. B. Yang, "Overview of bearingless permanent-magnet synchronous motors," IEEE Transactions on Industrial Electronics, Vol. 60, No. 12, 5528-5538, 2013.
doi:10.1109/TIE.2012.2232253

11. Okada, Y., et al., "Development of hybrid type self-bearing slice motor for small and high speed rotary machines," 2001 Conference Record-IAS Annual Meeting (IEEE Industry Applications Society), Vol. 3, 2005-2012, 2001.

12. Cao, X. and Z. Q. Deng, "A full-period generating mode for bearingless switched reluctance generators," IEEE Transactions on Applied Superconductivity, Vol. 20, No. 3, 1072-1076, 2010.
doi:10.1109/TASC.2010.2041206

13. Wang, J., S. Kim, and N. Kim, "A study on the bearingless switched reluctance rotation motor with improved motor performance," Journal of Mechanical Science and Technology, Vol. 27, No. 5, 1407-1414, 2013.
doi:10.1007/s12206-013-0321-6

14. Asama, J., et al., "Proposal and analysis of a novel single-drive bearingless motor," IEEE Transactions on Industrial Electronics, Vol. 60, No. 1, 129-138, 2013.
doi:10.1109/TIE.2012.2183840

15. Chiba, A. and J. Asama, "Influence of rotor skew in induction type bearingless motor," IEEE Transactions on Magnetics, Vol. 48, No. 11, 4646-4649, 2012.
doi:10.1109/TMAG.2012.2198872

16. Zhu, Z. Q. and D. Howe, "Influence of design parameters on cogging torque in permanent magnet machines," IEEE Transactions on Energy Conversion, Vol. 15, No. 4, 407-412, 2006.
doi:10.1109/60.900501

17. Wang, H., et al., "Design of novel bearingless switched reluctance motor," IET Electric Power Applications, Vol. 6, No. 2, 73-81, 2012.
doi:10.1049/iet-epa.2010.0229

18. Peng, W., F. G. Zhang, and J. W. Ahn, "Design and control of novel bearingless SRM with double stator," 2012 IEEE International Symposium on Industrial Electronics, 1928-1933, 2012.
doi:10.1109/ISIE.2012.6237387

19. Hu, Y. F., Z. D. Zhou, and Z. F. Jiang, The Basic Theory and Application of Magnetic Bearings, Machinery Industry Publishers, Beijing, 2006.

20. Young, W. C., Roark’s Formulas for Stress and Strain, 6th Edition, McGraw-Hill, Singapore, 1989.